• Title/Summary/Keyword: Heating Rate

Search Result 1,918, Processing Time 0.026 seconds

Effect of Al Amount on the Sintering Behavior and Mechanical Properties of Reaction Bonded Alumina (반응 소결 Alumina의 소결거동과 기계적 성질에 미치는 Al 첨가량의 영향)

  • 장복기;문종하;이종호
    • Journal of the Korean Ceramic Society
    • /
    • v.34 no.5
    • /
    • pp.519-527
    • /
    • 1997
  • The effect of Al content and heating rate on the sintering behavior, microstructure, and mechanical properties of reaction bonded alumina (RBAO) was investigated. As the heating rate became slower a critical Al content which could be added to RBAO increased. The weight gain and linear shrinkage of RBAO containing of 55 vol% Al were 28% and 6.5%, respectively. The relative density of RBAO decreased from 96 to 94%, as the amount of Al increased from 15 to 55 vol%. The hardness of RBAO increased from 17.8 to 19.9 GPa and the bending strength enhanced from 370 to 570 MPa, as the amount of Al increased from 15 to 55 vol%. On the other hand, the wear rate of RBAO degraded from 6.7 to 3.39$\times$10-5 $\textrm{mm}^2$/kg and the fracture toughness decreased from 4.1 to 3.6 MPa.m1/2, as the amount of Al increased from 15 to 55 vol%. Fracture modes were shown to the mixed mode of inter/transgranular. However, transgranular fracture was dominant with increasing the content of Al.

  • PDF

Serial Flow Microwave Thermal Process System for Liquid Foods

  • Kim, Young-Jin;Lim, Seok-Won;Chun, Jae-Kun
    • Food Science and Biotechnology
    • /
    • v.14 no.4
    • /
    • pp.446-449
    • /
    • 2005
  • Two single-magnetron heating systems (SM-HS), each with a helical glass heat exchanger and a cylindrical cavity, were combined to make a two-magnetron-in-series heating system (2MS-HS) in order to increase the heating capacity. A comparison using water showed that the heating performance of the 2MS-HS was increased by two-fold as compared to that of the SM-HS, resulting in energy saving of 7.0% in 2MS-HS. Pasteurization test of 2MS-HS conducted with model food (LB broth contaminated with Bacillus subtilis) showed two-fold higher treatment capacity compared to SM-HS. Relationships between outlet temperature of the processed food, flow rate, and residence time in the 2MS-HS were established for water. Optimum pasteurization capacity was 17 s, $73^{\circ}C$, at flow rate of 280 ml/min. The 2MS-HS could be applied to the small-scale pasteurization of liquid food.

An Experimental Study on Heat Transfer Performance of Heating Medium Oil Fluidized Bed Heat Exchanger (열매체유 유동층 열교환기의 전열성능에 대한 실험적 연구)

  • Park, Sang-Il;Ko, Chang-Bok;Lee, Young-Soo
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.27 no.3
    • /
    • pp.146-151
    • /
    • 2015
  • The heat transfer performance of heating medium oil fluidized bed heat exchanger was measured. The operation variables were air flow rate, air inlet temperature, moisture content, water flow rate and water inlet temperature. The outside heat transfer coefficient was determined from the heat exchanger experiment and its experimental correlation was determined as a function of air velocity and viscosity of heating medium oil. Effect of viscosity was well agreed with the previous studies. Errors of the correlation equation was less than about 10% for outside heat transfer coefficient developed in this study when compared with the measured value. Hot water with the temperature greater than $77^{\circ}C$ could be produced by using the heating medium oil fluidized bed heat exchanger.

Effects of Local Heating on Whole Body Skin Temperature - Centered on the Comparison of Old Women & Female Collegians -

  • Shim, Boo-Ja
    • Journal of Fashion Business
    • /
    • v.6 no.3
    • /
    • pp.84-93
    • /
    • 2002
  • The purpose of this study was to design functional clothing based on the physical characteristics of old women. The subjects of this experiment were 5 healthy old women and 5 college women. While the subjects were exposed to the circumstances of $28{\pm}0.5^{\circ}C$ and local heating at 7 areas (chest, abdomen, back, loin, hand, thigh and instep), their skin temperature, physiological reaction and psychological reaction were determined. The conclusions about the effects of local heating are as follows : 1. Skin temperature before heating was in the order of head-neck> trunk> upper limbs> lower limbs (Group A: old subjects) and head-neck> trunk> lower limbs> upper limbs (Group B: young subjects). 2. The heating pad was attached and detached for 30 minutes each. The sharpest rise and fall were recorded at 5 minutes with the pad on and off. Both groups had great changes in the body parts near trunk. 3. With the pad on and off, both groups showed no change in body temperature, blood pressure, and pulse rate. 4. Concerning the pervasive effects of local heating on whole body skin temperature, loin heating greatly increased other body parts in Group A. In Group B, the effects were large in heating chest, abdomen, back, loin, and thigh. 5. The loin part of old women has the greatest pervasive effect of local body heating.

Ohmic Heating Characteristics of Fermented Soybean Paste and Kochujang (된장 및 고추장의 Ohmic heating 특성)

  • Cho, Won-Il;Kim, Do-Un;Kim, Young-Suk;Pyun, Yu-Ryang
    • Korean Journal of Food Science and Technology
    • /
    • v.26 no.6
    • /
    • pp.791-798
    • /
    • 1994
  • Ohmic heating is a food processing operation in which heat is internally generated within foods by the passage of alternating electric current. The process enables highly viscous paste foods such as Kochujang, and fermented soybean paste to be heated very fast. In order to develope the novel pasteurization process of paste foods, static Ohmic heating system was built, and heating characteristic during Ohmic heating under various conditions were studied. Electric conductivities of Kochujang and fermented soybean paste at room temperature were 1.865 S/m and 2.510 S/m, respectively and increased linearly with increasing temperature. Specific heating rate was highly dependent on the frequency. The highest heating rate was achieved at 5 KHz for Kochujang and 20 KHz for fermented soybean paste. Uniform heating throughout the sample was achieved during Ohmic heating with low frequency electrical currents, however above 5 KHz frequency, surface temperature was several degrees higher than the bulk.

  • PDF

Spalling Prevention of High Strength concrete Corresponding to the Various Heating Curves (가열온도곡선 변화에 따른 고강도 콘크리트의 폭렬방지특성)

  • Han, Cheon-Goo;Pei, Chang-Chun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.13 no.3 s.55
    • /
    • pp.127-134
    • /
    • 2009
  • This study investigated their properties of spalling resistance and residual compressive strength after fire test corresponding to various ISO, RABT heating curves, and contents of hybrid organic fiber of high strength concrete. The results were summarized as following. As fundamental characters of concrete with hybrid organic fiber, the flowability was directly declined as the increase of fiber contents, and air contents were decreased or increased a little bit, but there was not big difference. The compressive strength was gradually declined sluggishly at 28 days. As properties of fire resistance, in case of RABT heating curves, compare with ISO heating curves a spalling aspect showed till range that has much contents of hybrid organic fiber, but they are mostly peeling spalling, which means spalling aspect didn't happen to inside. In conclusion, in case of W/B 25% high strength concrete, the spalling was prevented over 0.04% of contents of fiber at ISO heating curve and over 0.10% of contents of fiber at the RABT heating curve. In case of spalling was prevented, mass reduction rate according to the change of heating temperature curves showed around 7% at ISO heating curves and around 9% at RABT heating curves. The residual compressive strength rate corresponding to the change of heating temperature curves showed 50%~60% at ISO heating temperature curves and 30%~35% at RABT heating temperature curves in case of spalling was prevented.

Development of Y Strainer Type Automatic Flow Rate Regulating Valve (Y 스트레이너형 자동 정유량 조절 밸브의 개발)

  • Yoon, Joon-Yong;Kwon, Woo-Chul
    • The KSFM Journal of Fluid Machinery
    • /
    • v.10 no.1 s.40
    • /
    • pp.49-55
    • /
    • 2007
  • An 'Y' strainer type automatic flow rate regulating valve, which functions are to remove impurities from hot water inside the pipe and to maintain a constant flow rate regardless of variations of the differential pressure between valve inlet and outlet at the same time, is developed for distributing hot water equally to several pipes with district heating or central heating system. Numerical analysis of the three dimensional turbulent flow field in a valve shape is carried out to confirm the flow field whether the designed regulator shape is acceptable or not. The final developed valve improves installation time and cost and maintenance ability comparing with set-up 'Y' strainer and regulator separately. Tolerance for the nominal flow rate is also satisfied within ${\pm}5%$.

Effect of Heating Conditions on Apparent Viscosity of Cowpea Sediment Dispersions (가열조건에 따른 동부 앙금 호화액의 겉보기 점도)

  • 이애랑;김성곤
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.23 no.5
    • /
    • pp.822-826
    • /
    • 1994
  • Effects of concentration(6-9%, db) , heating temperature (80-95$^{\circ}C$), cooking time (10-50min) and heating method (continuous and instantaneous) on the apparent viscosity of cowpea sediment dispersions at 6$0^{\circ}C$ were investigated. The instantaneous heating resulted in higher apparent viscosity than continuous heating regardless concentrations and heating temperatures. The activation energy of the increase rate constant of the apparent viscosity was about 8 kcal/mole. The apparent viscosity of the cowpea sediment dispersion heated to 95$^{\circ}C$ and held for 20 min showed a linear relation with the 20 min height at 92.5$^{\circ}C$ by viscoamylograph.

  • PDF

Analysis on Aerodynamic Heating on Spike and Dome Configuration (스파이크와 돔 형상의 공력 가열 해석)

  • Jung Suk Young;Yoon Sung Joon;Byon Woosik
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.109-113
    • /
    • 2002
  • Numerical analysis of aerodynamic heating for KPSAM is performed using aerodynamic heating model suitable to KPSAM, which has complex flow field resulting from the spike attached to the dome, such as large separation area and the strong shock/boundary layer interaction region around reattachment point on the dome. The aerodynamic heating model is validated and modified through the comparison between the flight test measurement and the thermal analysis results. TFD temperature sensors are installed on the dome to measure surface temperature during the flight. Computation results, obtained from the heat transfer analysis on the sensors, agree well with flight test data. The aerodynamic heating model provides heat transfer rate into surface as a boundary condition of unsteady 1D/axisymmetric thermal analysis on the missile structure. The axisymmetric thermal analysis using FLUENT is more versatile than the 1D analysis and can be applied to the heating problem related with complex structures and multi-dimensional heat transfer problems such as prediction of temperature rise at contact surface of different materials.

  • PDF

Nonequilibrium Heat Transfer Characteristics During Ultrafast Pulse Laser Heating of a Silicon Microstructure

  • Lee Seong Hyuk
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.6
    • /
    • pp.1378-1389
    • /
    • 2005
  • This work provides the fundamental knowledge of energy transport characteristics during very short-pulse laser heating of semiconductors from a microscopic viewpoint. Based on the self-consistent hydrodynamic equations, in-situ interactions between carriers, optical phonons, and acoustic phonons are simulated to figure out energy transport mechanism during ultrafast pulse laser heating of a silicon substrate through the detailed information on the time and spatial evolutions of each temperature for carriers, longitudinal optical (LO) phonons, acoustic phonons. It is found that nonequilibrium between LO phonons and acoustic phonons should be considered for ultrafast pulse laser heating problem, two-peak structures become apparently present for the subpicosecond pulses because of the Auger heating. A substantial increase in carrier temperature is observed for lasers with a few picosecond pulse duration, whereas the temperature rise of acoustic and phonon temperatures is relatively small with decreasing laser pulse widths. A slight lagging behavior is observed due to the differences in relaxation times and heat capacities between two different phonons. Moreover, the laser fluence has a significant effect on the decaying rate of the Auger recombination.