• Title/Summary/Keyword: Heating Experiment

Search Result 869, Processing Time 0.022 seconds

Verification of the HACCP System in School Foodservice Operations - Focus on the Microbiological Quality of Foods in Heating Process and After-Heating Process - (학교급식소의 HACCP 시스템 적합성 검증 -가열조리 및 가열조리 후처리 공정의 미생물적 품질평가를 중심으로-)

  • 전인경;이연경
    • Journal of Nutrition and Health
    • /
    • v.36 no.10
    • /
    • pp.1071-1082
    • /
    • 2003
  • The objective of this study was to evaluate and improve the microbiological quality of HACCP application in school foodservice operations. The microbiological quality of foods and utensils were evaluated two times at each critical control point (CCP) with 3M petrifilm in five Daegu elementary schools. Two processes were evaluated: Heating process and after-heating process. The CCPs of the heating process were receiving, cooking and serving temperatures. The CCPs of the after-heating process were personal hygiene, cross contamination avoidance and serving temperature. After the first experiment, 31 employees of five schools were classroom educated, trained on-site, and pre- and post-tested on HACCP-based sanitation with the goal of improving the microbiological quality of the foodservice. Scores representing knowledge of holding, thawing, washing, food temperature, sanitizing and food-borne illness increased after education. In the heating process, internal food temperatures in the first and second experiments were higher than 74$^{\circ}C$, the holding temperature in the first experiment was less than 6$0^{\circ}C$. In the second experiment, the serving temperature improved to a satisfactory level. The microbiological quality in the second experiment improved by decreasing the time from cooking to serving. In the after-heating process, the ingredients were boiled before being cut in the first experiment. In the second experiment, ingredients were cut before being boiled, improving microbiological quality. Also in the second experiment, cooking just before serving food improved its microbiological quality through time-temperature control. These results strongly suggest it is essential to measure microbiological quality regularly and to educate employees on HACCP continuously, especially time-temperature control and cross contamination avoidance in order to improve foodservice quality.

A Comparative Analysis and Improvement of the Fractional Distillation Experiments in the Middle School Science Textbooks (중학교 과학 교과서 분별 증류 실험의 비교 분석 및 개선)

  • Ryu, Oh Hyun;Choi, Moon Young;Song, Ju Hyun;Kwon, Jung Geun;Paik, Seoung Hey;Park, Kuk Tae
    • Journal of the Korean Chemical Society
    • /
    • v.45 no.5
    • /
    • pp.481-490
    • /
    • 2001
  • The purpose of this study was to find out the problems on the fractional distillation experiments in the middle school science textbooks based on the 6th curriculum and to suggest an efficient experiment method for the middle school students. The first step was the classification of the experiments in 8 science textbooks according to heating apparatus and liquid mixtures. The second step was doing each experiment 3 times followed by the experimental process in the textbooks. The third step was developing the alternative experiments for solving the problems found in the second step. The heating method used in the alternative experiments were direct heating, oil bath, and heating mantle. The results of the second step showed that the direct heating experiment of branched round flask was more close to the theoretical prediction than the experiment of water bath heating of branched test tube. Also the direct heating experiment of thermally insulated branched round flask was better than the result of the experiment which was not insulated. The results of the third step showed that the experiment using heating mantle regulated heating power by observing the temperature of distillate gave the closest result to the theoretical prediction. From the above results, it is concluded that the experiment using branched test-tube with water bath heating is not adequate for the fractional distillation and an alternative experiment using insulated branched round flask with heating mantle regulated heating power during experiment is recommended.

  • PDF

Evaluation for the Heating Performance of the Heated Clothing on Market (시판 발열의복의 발열성능 평가)

  • Lee, Hyun-Young;Jeong, Yeon-Hee
    • Fashion & Textile Research Journal
    • /
    • v.12 no.6
    • /
    • pp.843-850
    • /
    • 2010
  • To evaluate the heating performance of commercial heated vests, we investigated the thermal images and the temperature between body and vest for three heated vests. We captured infrared thermography by FT-IR Spectrometer to analyzed the heating temperature of the heating elements taken from the vests, and the maximum heating temperature of the vests was compared with thermal image in the room temperature($18^{\circ}C$). In outdoor experiment($-4.7^{\circ}C$), we measured the inner temperature as well as the thermal image of heated vests. Four healthy men participated in this experiment, and the ANOVA and Duncan test was performed for statistical analysis. As the results, the heating temperature range of the heated vests used in this experiment was $32{\sim}42^{\circ}C$, much lower than the displayed temperature range in their specifications, so the exact specification for heating performance of heated clothing was required. In comparisons of the heating performance among the heated vests, we found out that the insulation of clothing is very important to design the heated clothing, because the inner temperature of the vest had good insulation by itself was higher than that of the vest shown higher temperature over $7^{\circ}$ than another vests at the heating temperature.

Effect of Additional Early-Morning Heating Periods on the Growth and Yield of Cucumber and Heating Load (조조가온기간이 시설재배 오이의 생육과 수량 및 난방부하에 미치는 영향)

  • Kwon Joon Kook;Kang Nam Jun;Lee Jae Han;Kang Kyung Hee;Choi Young Hah
    • Journal of Bio-Environment Control
    • /
    • v.13 no.4
    • /
    • pp.245-250
    • /
    • 2004
  • To investigate the effect of early-morning heating periods on growth and yield of cucumber and heating load in a greenhouse cultivation, three additional heating periods (0, 1 and 2 hours) were compared to rise temperature from $12^{\circ}C\;to\;16^{\circ}C$ in the early-morning. Leaf temperature just before opening the thermal screen was $3.3^{\circ}C\;and\;4.1^{\circ}C$ higher in the 1 and 2 hour heating compared to that in the control (0 hour heating), respectively. Photosynthetic rate, conductance to $H_2O$ and transpiration rate of cucumber leaves were the highest in the 2 hour heating, and the lowest in the control. However. the difference between the 1 hour and 2 hour heating was not significant. Inorganic element content in cucumber leaves was not significant among the treatments of duration. Initial growth after planting of cucumber was greater in the 1 and 2 hour heating than that in the control. Yield increased by $11\%\;and\;15\%$ in the 1 hour and 2 hour heating compared to that in the control. respectively. Fuel consumption for heating increased by $12\%\;and\;22\%$ in the 1 hour and 2 hour heating compared to that in the control, respectively. Considering in the yield and fuel consumption for heating. 1 or 2 hours of early morning heating could be effective in temperature management for cucumber in a greenhouse cultivation.

Experimental Investigation for the Characteristics of Energy-Usage of Heating Systems in Apartment Complex Part I: Experiment System Implementation (난방방식별 에너지사용 특성 실증 분석 I: 실증 시스템 구축)

  • Im, Yong-Hoon;Choi, Kyu-Sung;Kim, Hyouck-Ju
    • Proceedings of the SAREK Conference
    • /
    • 2007.11a
    • /
    • pp.480-487
    • /
    • 2007
  • The experimental implementation for different heating systems, district heating and separate heating and power, is discussed in the analysis of the characteristics of energy-usage in apartment complex. Total 20 families are chosen for the experiment, 10 for the district heating and the others for separate heating and power. Among the 10 families, the operating temperature was forced to be controled within certain range of temperatures for 5 ones, and it was left as usual for the other ones. The configuration and general features of each facilities and data acquisition systems are mentioned in brief and the technical specifications for it are also described. The analysis for the experiment results of this investigation is going to be carried out and published in a subsequent paper.

  • PDF

Analysis of Control Error Factors of a Thermal Output Experiment for Radiant Heating Panels (복사난방패널 방열량실험의 제어오차요인 분석)

  • Shin, Dae-Uk
    • Land and Housing Review
    • /
    • v.9 no.4
    • /
    • pp.33-42
    • /
    • 2018
  • As a radiant heating panel gets more popularity, the need to study on evaluation method of thermal output of the panel also becomes increasing. Generally, the chamber using method is applied to evaluate the thermal output through an experiment. However, the chamber using method cannot be used due to the limitations on space and cost. EN1264 addresses the test equipment to evaluate the thermal output by using simpler experimental setup, and introduces application method in detail. However, there is not enough description of control methods to meet the experiment condition, and it is difficult to meet this when practical experiment. Therefore, this paper analysed the control error factors of when the thermal output experiment is performed. When EN1264 method is applied to evaluate the thermal output of the radiant floor heating panel, the error factor which is caused by the characteristic of test equipment cannot be removed by the control methods of chamber using method. In addition, the error factor can be occurred at the element which is located out of the control system. These possible error factors are defined as the characteristic error factors.

An Experimental Study on the Fire Hazard of Electric Heating Pad (전기장판의 화재위험성 실험연구)

  • Lee, Bok-Young;Park, Chan-Ho;Park, Sang-Tae;Hong, Sung-Ho;Yu, Hyun-Jong
    • Fire Science and Engineering
    • /
    • v.20 no.3 s.63
    • /
    • pp.113-117
    • /
    • 2006
  • This study presents analysis of fire hazard of electrical heating pad. In order to analyze fire hazard fire experimental and flammability experiment is conducted. The fire experiment is conducted to simulate normal condition and abnormal condition such as breakdown of thermostat. Vertical burning test(UL 94) is conducted for the fire retardant experiment. Kinds of electric heating pad used for experiment are electric mat, fabric pad, vinyl pad. The results show that fire hazard is high in case of breakdown of thermostat with the rating voltage supply. And Material of electric heating pad has not fire retardant performance.

Verification Experiment and Calculation of Heating Load for a Test Space (시험공간에 대한 난방부하 실증실험 및 계산)

  • 현석균;홍희기;유호선
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.14 no.2
    • /
    • pp.153-160
    • /
    • 2002
  • As a way to assess the reliability of programs for building energy analysis, verification experiment and calculation of heating load are simultaneously conducted for a well-defined test space. Experimental conditions are carefully set to minimize uncertainties associated with radiation heating, air change, infiltration, and room-to-room interaction. Dyna- mic load calculations using TRNSYS, which are performed for two different computation domains, rely on the energy rate control that represents inherent load characteristics of a space. The predicted instantaneous heating load favorably simulates the overall behavior the measured one, though the latter fluctuates much more rapidly than the former Comparison of the accumulative load between the experiment and calculations shows a close agreement within an engineering tolerance, regardless of the computation model. It is deduced from such findings that the present experimental results along with weather information can serve as a set of reference data for validating load calculation softwares from the users'standpoint. In order to enhance the completeness of this work, a complementary study on the cooling load for the same test space is highly recommended.

Practical Issues on In Situ Heating Experiments in Transmission Electron Microscope (투과전자현미경 내 직접 가열 실험에서의 실험적 문제들)

  • Kim, Young-Min;Kim, Jin-Gyu;Kim, Yang-Soo;Oh, Sang Ho;Kim, Youn-Joong
    • Applied Microscopy
    • /
    • v.38 no.4
    • /
    • pp.383-386
    • /
    • 2008
  • In performing in situ heating transmission electron microscopy (TEM) for materials characterizations, arising concerns such as specimen drifts and unintentional Cu contamination are discussed. In particular, we analysed the thermal and mechanical characteristics of in situ heating holders to estimate thermal drift phenomena. From the experimental results, we suggest an empirical model to describe the thermal drift behavior so that we can design an effective plan for in situ heating experiment. Practical approaches to minimize several hindrances arisen from the experiment are proposed. We believe that our experimental recommendations will be useful for a microscopist fascinated with the powerful potential of in situ heating TEM.

Development of a Method to Estimate the Seasonal Heating Load for Plastic Greenhouses (플라스틱 온실의 기간난방부하 산정 방법 개발)

  • Nam, Sang Woon;Shin, Hyun Ho
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.57 no.5
    • /
    • pp.37-42
    • /
    • 2015
  • In order to provide fundamental data for the creation of environmental design criteria for horticultural facilities, we developed a method to easily calculate the seasonal heating load applying heating degree-hour while taking into account heating load reductions due to solar radiation in the daytime, and reviewed through greenhouse heating experiments. Heating experiments and measuring meteorological environments were carried out in three greenhouses located at Buyeo, Cheonan, and Buan, and we derived reduction factors of seasonal heating load according to hours of sunshine. Daily mean hours of sunshine during the experiment period in each of the greenhouse was 4.0 to 8.3 hours, and the reduction factor of seasonal heating load was 0.64 to 0.85, has been shown to decrease linearly with the increase in hours of sunshine. A method to estimate the seasonal heating load for greenhouses was developed using the reduction factor of seasonal heating load derived from the greenhouse heating experiment, including the adjustment factor of seasonal heating load according to hours of sunshine. The developed method was validated through heating experiments in a greenhouse located at Cheonan. Greenhouse seasonal heating loads calculated by the method developed in this study were analyzed to show the estimate error of 1.2 to 5.0%. It showed that the accuracy increased 2.3 times more than when using the heating load reduction factor of 0.75 applied uniformly in previous studies. Thus, the calculation method of seasonal heating load for greenhouses considering hours of sunshine developed in this study could be utilized for energy estimation, management planning, and economic evaluation in greenhouse design.