• Title/Summary/Keyword: Heating Cycle

Search Result 439, Processing Time 0.029 seconds

Heat Transfer Modeling by the Contact Condition and the Hole Distance for A-KRS Vertical Disposal (A-KRS 수직 처분공 접촉 조건 및 처분공 간의 거리에 따른 열전달 해석)

  • Kim, Dae-Young;Kim, Seung-Hyun
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.17 no.3
    • /
    • pp.313-319
    • /
    • 2019
  • The A-KRS (Advanced Korean Reference Disposal System) is the disposal concept for pyroprocessed waste, which has been developed by the Korea Atomic Energy Research Institute. In this disposal concept, the amount of high-level radioactive waste is minimized using pyrochemical process, called pyroprocessing. The produced pyroprocessed waste is then solidified in the form of monazite ceramic. The final product of ceramic wastes will be disposed of in a deep geological repository. By the way, the decay heat is generated due to the radioactive decay of fission products and raises the temperature of buffer materials in the near field of radioactive waste repository. However, the buffer temperature must be kept below $100^{\circ}C$ according to the safety regulation. Usually, the temperature can be controlled by variation of the canister interdistance. However, KAERI has modelled thermal analysis under the boundary condition, where the waste canisters are in direct contact with each other. Therefore, a reliable temperature analysis in the disposal system may fail because of unknown thermal resistence values caused by the spatial gap between waste canisters. In the present work, we have performed thermal analyses considering the gap between heating elements and canisters at the beginning of canister loading into the radioactive waste repository. All thermal analyses were performed using the COMSOL software package.

Geology and Volcanism of Hyeongjeseom (Islet) Volcano, Jeju Island (제주도 형제섬 화산체의 지질과 화산활동)

  • Park, Jun Beom;Koh, Gi Won;Jeon, Yongmun;Park, Won Bae;Moon, Soo Hyoung;Moon, Deok Cheol
    • Economic and Environmental Geology
    • /
    • v.54 no.2
    • /
    • pp.187-197
    • /
    • 2021
  • The Hyeongjeseom (Islet) is an erosional remnant of volcano which is located about 2 km northeast of sea shore of the Songaksan tuff ring, and is composed of volcaniclastic deposit, agglomerate and scoria deposit, ponded lava, aa lava flows, reworked deposit and beach deposit in ascending order from the base. The volcano is formed by volcaniclastic deposits and lava flows that recorded a transition from initial phreatomagmatic to magmatic explosions followed by lava effusion. It is interpreted that the outcropped volcaniclastic deposit may be a remaining portion of outer ring of a tuff cone. A bomb and a ponded lava yield geochemically basaltic trachyandesite compositions (SiO2 51.3 wt%, Na2O+K2O 6.0 wt%) and belong to olivine basalt with scarce (<5 %) phenocrysts of olivine, petrographically. By incremental heating Ar-Ar dating method, the plateau age of lava flow in the Heongjesom is 9.2±3.6(2σ) ka, implying that the volcanism of Heongjeseom may have occurred earlier than the Songaksan tuff ring which erupted ca. 3.7 ka. It still remains a task to find a volcano which matches with a historical record of volcanic activity that occurred a thousand years ago.

Thermal Energy Capacity of Concrete Blocks Subjected to High-Temperature Thermal Cycling (열사이클을 적용한 고온 조건 콘크리트 블록의 열용량 특성)

  • Yang, In-Hwan;Park, Ji-Hun
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.8 no.4
    • /
    • pp.571-580
    • /
    • 2020
  • In this study, an experimental study on storage media for thermal energy storage system was conducted. For thermal energy storage medium, concrete has excellent thermal and mechanical properties and also has various advantages due to its low cost. In addition, the ultra-high strength concrete reinforced by steel fibers exhibits excellent durability against exposure to high temperatures due to its high toughness and high strength characteristics. Moreover, the high thermal conductivity of steel fibers has an advantageous effect on heat storage and heat dissipation. Therefore, to investigate the temperature distribution characteristics of ultra-high-strength concrete, concrete blocks were fabricated and a heating test was performed by applying high-temperature thermal cycles. The heat transfer pipe was buried in the center of the concrete block for heat transfer by heat fluid flow. In order to explore the temperature distribution characteristics according to different shapes of the heat transfer pipe, a round pipe and a longitudinal fin pipe were used. The temperature distribution at the differnent thermal cycles were analyzed, and the thermal energy and the cumulated thermal energy over time were calculated and analyzed for comparison based on test results.

Effect of Package Size and Pasteurization Temperature on the Quality of Sous Vide Processed Spinach (Sous Vide 가공 시금치의 품질에 미치는 포장단위 및 살균온도의 영향)

  • 장재덕;김기태;이동선
    • Food Science and Preservation
    • /
    • v.11 no.2
    • /
    • pp.195-200
    • /
    • 2004
  • Microbial lethal value and nutrient retention of sous vide processed spinach were evaluated with mathematical model prediction and experimental trial for different package sizes and pasteurization temperatures. The package size covers 500 g, 1 kg and 2 kg, while the pasteurization temperature includes 80, 90 and 97$^{\circ}C$. The basic process scheme consists of filling blanched spinach into barrier plastic film pouch, sealing under vacuum, pasteurization in hot water with over pressure and final cooling to 3$^{\circ}C$. Pasteurization condition was designed based on attainment of 6 decimal inactivation of Listeria monocytogenes at geometric center of the pouch package by heating cycle, which was determined by general method. Heat penetration property of the package and thermal destruction kinetics were combined to estimate the retention of ascorbic acid and chlorophyll. Smaller packages with shorter pasteurization time gave better nutrient retention, physical and chemical qualities. Larger package size was estimated and confirmed experimentally to give higher pasteurization value at center, lower ascorbic acid and chlorophyll contents caused by longer heat process time. Lower pasteurization temperature with longer process time was predicted to give lower pasteurization value at center and lower ascorbic acid, while chlorophyll content was affected little by the temperature. Experimental trial showed better retention of ascorbic acid and chlorophyll for smaller package and higher pasteurization temperature with shorter heating time. The beneficial effect of smaller package and higher pasteurization temperature was also observed in texture, color retention and drip production.

A Study for the Methodology of Analyzing the Operation Behavior of Thermal Energy Grids with Connecting Operation (열 에너지 그리드 연계운전의 운전 거동 특성 분석을 위한 방법론에 관한 연구)

  • Im, Yong Hoon;Lee, Jae Yong;Chung, Mo
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.1 no.3
    • /
    • pp.143-150
    • /
    • 2012
  • A simulation methodology and corresponding program based on it is to be discussed for analyzing the effects of the networking operation of existing DHC system in connection with CHP system on-site. The practical simulation for arbitrary areas with various building compositions is carried out for the analysis of operational features in both systems, and the various aspects of thermal energy grids with connecting operation are highlighted through the detailed assessment of predicted results. The intrinsic operational features of CHP prime movers, gas engine, gas turbine etc., are effectively implemented by realizing the performance data, i.e. actual operation efficiency in the full and part loads range. For the sake of simplicity, a simple mathematical correlation model is proposed for simulating various aspects of change effectively on the existing DHC system side due to the connecting operation, instead of performing cycle simulations separately. The empirical correlations are developed using the hourly based annual operation data for a branch of the Korean District Heating Corporation (KDHC) and are implicit in relation between main operation parameters such as fuel consumption by use, heat and power production. In the simulation, a variety of system configurations are able to be considered according to any combination of the probable CHP prime-movers, absorption or turbo type cooling chillers of every kind and capacity. From the analysis of the thermal network operation simulations, it is found that the newly proposed methodology of mathematical correlation for modelling of the existing DHC system functions effectively in reflecting the operational variations due to thermal energy grids with connecting operation. The effects of intrinsic features of CHP prime-movers, e.g. the different ratio of heat and power production, various combinations of different types of chillers (i.e. absorption and turbo types) on the overall system operation are discussed in detail with the consideration of operation schemes and corresponding simulation algorithms.

Changes in Quality Characteristics of Seasoned Soy Sauce Treated with Superheated Steam and High Hydrostatic Pressure during Cold Storage (과열증기와 초고압 처리법을 적용한 간장 소스의 냉장저장 중 품질 특성 변화)

  • Choi, Yoon;Oh, Ji-Hye;Bae, In-Young;Cho, Eun-Kyoung;Kwon, Dae-Joong;Park, Hae-Won;Yoon, Sun
    • Korean journal of food and cookery science
    • /
    • v.29 no.4
    • /
    • pp.387-398
    • /
    • 2013
  • Seasoned soy sauce is one of the popular seasoning sauces added to the Korean traditional foods such as Bulgogi, Galbi. However, industrially processed sauces have poor sensory quality because of heating treatment for sterilization. The purpose of this study was to develop seasoned soy sauce having fresh taste and good quality by applying superheated steam (SHS) and high hydrostatic pressure (HHP) technologies. To maintenance the sauce qualities, food materials such as apple, onion, and garlic were pretreated with SHS (heater $100^{\circ}C$, steam $280^{\circ}C$, 30 s~1 min 30 s) before mixing with other ingredients. During storage of 7 days, color, pH, and browning potential of SHS treated samples (apple, onion and garlic) did not change and also polyphenol oxidase was inactivated (p<0.05). The seasoned soy sauce including SHS treated materials was sterilized by thermal process ($85^{\circ}C$, 30min) or non-thermal process, HHP (550 MPa, $5{\sim}10^{\circ}C$, 3 min). In SHS+HHP treated sauce, salinity, sugar contents, lightness, viscosity did not change (p<0.05), and total viable cell counts were detected below 4 log cycle at $5^{\circ}C$ for 30 days. E.coli and B.cereus are not determined in all samples. In sensory evaluation, Bulgogi prepared with SHS+HHP treated sauce was more acceptable than others.

Manufacture of the vol-oxidizer with a capacity of 20 kg HM/batch in $UO_2$ pellets using a design model (설계 모델을 이용한 $UO_2$ 펠릿 20 kg HM/batch용 분말화 장치 제작)

  • Kim Young-Hwan;Yoon Ji-Sup;Jung Jae-Hoo;Hong Dong-Hee;Uhm Jae-Beop
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.4 no.3
    • /
    • pp.255-263
    • /
    • 2006
  • Vol-oxidizer is a device to convert $UO_2$ pellets into $U_3O_8$ powder and to feed a homogeneous powder into a Metal Conversion Reactor in the ACP(Advanced Spent Fuel Conditioning Process). In this paper, we propose a design model of the vol-oxidizer, develop the new vol-oxidizer with a capacity of 20 kg HM/batch in $UO_2$ pellets, and conduct a verification for the device. Design considerations include the internal structure, the capacity, the heating position of the device, and the size. The dimensions of the new vol-oxidizer are decided by the design model. We determine a permeability test of the $U_3O_8$ measuring the temperature distribution, and the volume of $UO_2$ and $U_3O_8$. We manufactured the new vol-oxidizer for a 20 kg HM/batch in $UO_2$ pellets, and then analyzed the characteristics of the $U_3O_8$ powder for the verification. The experimental results show that the permeability of the $U_3O_8$ throughout mesh enhance more than old vol-oxidizer, the oxidation time takes only 8 hours when compared with the 13 hours of the old device, and the average distribution of particle size is $40{\mu}m$. The capacities of new vol-oxidizer for a 20 kg HM/batch in $UO_2$ pellets were agree well with the predictions of design model.

  • PDF

Coupled T-H-M Processes Calculations in KENTEX Facility Used for Validation Test of a HLW Disposal System (고준위 방사성 폐기물 처분 시스템 실증 실험용 KENTEX 장치에서의 열-수리-역학 연동현상 해석)

  • Park Jeong-Hwa;Lee Jae-Owan;Kwon Sang-Ki;Cho Won-Jin
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.4 no.2
    • /
    • pp.117-131
    • /
    • 2006
  • A coupled T-H-M(Thermo-Hydro-Mechanical) analysis was carried out for KENTEX (KAERI Engineering-scale T-H-M Experiment for Engineered Barrier System), which is a facility for validating the coupled T-H-M behavior in the engineered barrier system of the Korean reference HLW(high-level waste) disposal system. The changes of temperature, water saturation, and stress were estimated based on the coupled T-H-M analysis, and the influence of the types of mechanical constitutive material laws was investigated by using elastic model, poroelastic model, and poroelastic-plastic model. The analysis was done using ABAQUS, which is a commercial finite element code for general purposes. From the analysis, it was observed that the temperature in the bentonite increased sharply for a couple of days after heating the heater and then slowly increased to a constant value. The temperatures at all locations were nearly at a steady state after about 37.5 days. In the steady state, the temperature was maintained at $90^{\circ}C$ at the interface between the heater and the bentonite and at about $70^{\circ}C$ at the interface between the bentonite and the confining cylinder. The variation of the water saturation with time in bentonite was almost same independent of the material laws used in the coupled T-H-M processes. By comparing the saturation change of T-H-M and that of H-M(Hydro-Mechanical) processes using elastic and poroelastic material mod31 respectively, it was found that the degree of saturation near the heater from T-H-M calculation was higher than that from the coupled H-M calculation mainly because of the thermal flux, which seemed to speed up the saturation. The stresses in three cases with different material laws were increased with time. By comparing the stress change in H-M calculation using poroelasetic and poroelasetic-plastic model, it was possible to conclude that the influence of saturation on the stress change is higher than the influence of temperature. It is, therefore, recommended to use a material law, which can model the elastic-plastic behavior of buffer, since the coupled T-H-M processes in buffer is affected by the variation of void ratio, thermal expansion, as well as swelling pressure.

  • PDF

Evaluation of Dark Spots Formated on the High Temperature Metal Filter Elements (고온 금속필터 element 표면에 생성된 반점에 대한 평가)

  • Park, Seung-Chul;Hwang, Tae-Won;Moon, Chan-Kook
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.6 no.3
    • /
    • pp.171-178
    • /
    • 2008
  • Metal filter elements were newly introduced to the high temperature filter(HTF) system in the low- and intermediate-level radioactive waste vitrification plant. In order to evaluate the performance of various metal materials as filter media, elements made of AISI 316L, AISI 904L, and Inconel 600 were included to the test set of filter elements. At the visual inspection to the elements performed after completion of each test, a few dark spots were observed on the surface of some elements. Especially they were found much more at the AISI 316L elements than others. To check the dark spots are the corrosion phenomena or not, two kinds of analyses were performed to the tested filter elements. Firstly, the surfaces or the cross sections of filter specimens cut out from both normal area and dark spot area of elements were analyzed by SEM/EDS. The results showed that the dark spots were not evidences of corrosion but the deposition of sodium, sulfur and silica compounds volatilized from waste or molten glass. Secondly, the ring tensile strength were analyzed for the ring-shape filter specimens cut out from each kind of element. The result obtained from the strength tested showed no evidence of corrosion as well. Conclusionally, depending on the two kinds of analysis, no evidences of corrosion were found at the tested metal filter elements. But the dark spots formed on the surface could reduce the effective filtering area and increase the overall pressure drop of HTF system. Thus, continuous heating inside filter housing up to dew point will be required normally. And a few long-period test should be followed for the exact evaluation of corrosion of the metal filter elements.

  • PDF

Changes of Browning, Microbiological and Sensory Characteristics of Concentrated Garlic Juices during Storage (마늘 농축액의 저장 중 갈변도, 미생물 및 관능적 특성의 변화)

  • 배수경;김미라
    • Korean journal of food and cookery science
    • /
    • v.14 no.4
    • /
    • pp.394-399
    • /
    • 1998
  • The juice of garlic (Euichun variety) was extracted and concentrated by heating at 90$^{\circ}C$, by using a rotary vacuum evaporator at 45$^{\circ}C$, or by freezing at -50$^{\circ}C$ until the volume was reduced to 70% of the original's. The concentrated garlic juice was packed into 15 ml test tubes wrapped with aluminum foil and kept at 4$^{\circ}C$ or 25$^{\circ}C$ for 60 days. Changes of browning, microbiological and sensory characteristics of the concentrated garlic juices were monitored every 10 days. The specific gravity and viscosity of the prepared juices decreased in the juices concentrated at 90$^{\circ}C$, 45$^{\circ}C$ and -50$^{\circ}C$ in order. Browning of the concentrated garlic juices was slower during the storage at 4$^{\circ}C$ than at 25$^{\circ}C$. Browning occurred rapidly in the juice concentrated at 45$^{\circ}C$ during the storage, especially at 25$^{\circ}C$. The numbers of mesophilic and psychrotrophic bacteria in the juices did not increase significantly during the storage, which means the garlic juices had good shelf-life. The CFUs/ml of garlic juice concentrated at 90$^{\circ}C$ were lower about 1 to 2 log cycles than those in other concentrated juices. The juice concentrated at 90$^{\circ}C$ showed the weakest garlic odor and the strongest cooked odor among the juices. The juice concentrated at -50$^{\circ}C$ had the freshest odor, especially stored at 4$^{\circ}C$, but the juice concentrated at 90$^{\circ}C$ had lowest score in fresh odor. Brown color was dark in the juice concentrated at 45$^{\circ}C$ and green color of all the juices did not change significantly during the storage.

  • PDF