• Title/Summary/Keyword: Heated Wire

Search Result 56, Processing Time 0.027 seconds

Hot Wire Wind Speed Sensor System Without Ambient Temperature Compensation (주변 온도보상이 필요 없는 열선식 풍속 센서 시스템)

  • Sung, Junkyu;Lee, Keunwoo;Jung, Hoekyung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.23 no.10
    • /
    • pp.1188-1194
    • /
    • 2019
  • Among the many ways to measure the flow of fluid the hot air wind speed sensor is a device for measuring the speed or temperature by heat transfer of a fluid. However, the hot wire wind speed sensor is sensitive to external environmental factors, and has a disadvantage of inaccuracy due to ambient temperature, humidity, and signal noise. In order to compensate for this disadvantage, advanced technology has been introduced by adding temperature compensation circuits, but it is expensive. In order to solve this problem, this paper studies the wind speed sensor that does not need temperature compensation. Heated wind speed sensors are very vulnerable to the ambient temperature, which is generated by electronic circuits, even among external environmental factors. in order to improve this, the auxiliary heating element is additionally installed in the heating element to control a constant temperature difference between the auxiliary heating element and the heating element.

An Estimation of a Billet Temperature during Reheating Furnace Operation

  • Jang, Yu-Jin;Kim, Sang-Woo
    • International Journal of Control, Automation, and Systems
    • /
    • v.5 no.1
    • /
    • pp.43-50
    • /
    • 2007
  • Reheating furnace is an essential facility of a rod mill plant where a billet is heated to the required rolling temperature so that it can be milled to produce wire. Although it is very important to obtain information on billet temperatures, it is not feasible during furnace operation. Consequently, a billet temperature profile should be estimated. Moreover, this estimation should be done within an appropriate time interval for an on-line application. In this paper, a billet heat transfer model based on 2D FEM(Finite Element Method) with spatially distributed emission factors is proposed for an on-line billet temperature estimation and also a measurement is carried out for two extremely different furnace operation patterns. Finally, the difference between the model outputs and the measurements is minimized by using a new optimization algorithm named uDEAS(Univariate Dynamic Encoding Algorithm for Searches) with multi-step tuning strategy. The obtained emission factors are applied to a simulation for the data which are not used in the model tuning for validation.

Basic flow fields and stability characteristics of two dimensional V flames (이차원 V 화염의 기본 유동장과 안정화 특성)

  • Park, Jang-Hee;Lee, Dae-Keun;Shin, Hyun-Dong;Kim, Moon-Uhn
    • 한국연소학회:학술대회논문집
    • /
    • 2003.12a
    • /
    • pp.185-193
    • /
    • 2003
  • Basic flow fields of two dimensional V flames were examined as a preliminary work to study the instability of premixed flame with vorticity generation. Laminar premixed propane and methane flame were anchored by electrically heated wire to make two dimensional V flames. Flow fields were measured mainly by PIV(Particle Image Velocimetray) and the results were compared with those obtained by LDV(Laser Doppler Velocimetry) to confirm their reliability. Because the curvatures of V flames are so small, V flames were locally assumed to be inclined planar flames in gravitational field. The measured flow fields were locally compared with those of analytical solutions, which showed the qualitatively similar results. In downstream region, the vorticity fields were nearly constant except region near the center line, which support the assumption of locally one dimensional flame. Besides it was tried to find experimentally the similarity of flow fields in downstream region. Finally, stability diagram of propane and methane flames were drawn for the equivalence ratio less than one and the wide range of mean velocity.

  • PDF

A Study on the Fabrication of Heater based on Silicone Rubber (실리콘러버 기반의 히터제작에 관한 연구)

  • Jeong-Oh Hong;Jae Tack Hong;Shin-Hyeong Choi
    • Advanced Industrial SCIence
    • /
    • v.2 no.2
    • /
    • pp.9-15
    • /
    • 2023
  • Since silicone rubber heaters are flexible, they can be directly attached or installed in objects to be heated even in flat, curved or three-dimensional shapes. Since the current heating method heats the entire object to be heated and raises it to a required temperature, ignoring areas or positions where heat is not required, partial intensive heating cannot be performed. When using multi-heating zones, rather than heating the entire object to be heated, only the parts that need heat are intensively heated according to the process, so it is possible to heat quickly by local location by applying different amounts of heat with a small amount of electric capacity to each place that needs heat, and heat energy can reduce. In this study, the temperature and heating time of the partially concentrated region in the multi-heating region structure are measured so that a uniform temperature or temperature difference occurs in the region requiring thermal fusion. In order to determine the optimal power density range and reduce capacitance, the safety of a silicon rubber heater manufactured with a multi-heating zone structure is investigated. If the silicon rubber heater is manufactured in a multi-heating method, the multi-intensive heating technology can be ideally applied to all heating processes.

A Study of the analysis on the risk of ignition and low-temperature burns caused by the use of electrically heated clothes (발열의류로 인한 화재위험성 및 저온화상에 대한 분석 연구)

  • Lee, Jeong-Il
    • Journal of the Society of Disaster Information
    • /
    • v.14 no.2
    • /
    • pp.122-129
    • /
    • 2018
  • Purpose : This study aims to seek out the risk of low-temperature burns and fire. Method : Hot vests are connected by higher voltage than walking voltage. Results : Accordingly, the possibility of low-temperature burns and fire was proved high. It was also shown that hot vests with relatively lower resistance on heat rays reached a higher temperature as the same voltage was applied. Conclusion : There are some problems with hot vests because they do not have any safety devices like a thermostat or a timer to prevent temperature increasing rapidly. For the purpose of reducing the risk of low-temperature burns and fire, setting the standard of the minimum resistance temperature and regulating the use of heat rays with lower resistance are necessary.

Experimental Study on Heat Transfer Characteristics of Swirling Impinging Jet (스월 충돌제트의 열전달 특성에 관한 실험적 연굴)

  • Jo, Jeong-Won;Lee, Sang-Jun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.10
    • /
    • pp.1346-1354
    • /
    • 2001
  • The heat transfer characteristics off swirling air jet impinging on a heated flat plate have been investigated experimentally. The main object is to enhance the heat transfer rate by increasing turbulence intensity of impinging jet with a specially designed swirl generator. The mean velocity and turbulent intensity profiles of swirling jet were measured using a hot-wire anemomety. The temperature distribution on the heated flat surface was measured with thermocouples. As a result the swirl effect on the local heat transfer rate on the impinging plate is confined mainly in the small nozzle-to-plate spacings such as L/D<3 at the stagnation region. For small nozzle-to-plate spacings, the local heat transfer in the stagnation region is enhanced from the increased turbulence intensity due to swirl motion, compared with the conventional axisymmetric impinging jet without swirl. For example, the local Nusselt number of swirling jet with swirl number Sw=0.75 and Sw=1 is about 9.7-76% higher than that of conventional impinging jet at the radial location of R/D=0.5. With the increase of the nozzle-to-plate distance, the stagnation heat transfer rate is decreased due to the diminishing axial momentum of the swirling jet. However, the swirling impinging jet for all nozzle-to-plate spacings tested in this study does not enhance the average heat transfer rate.

DFabrication of $GdAlO_3$ Buffer Layers by Sol-Gel Processing (졸-겔법에 의한 $GdAlO_3$ 버퍼층의 제조)

  • Bang, Jae-Cheol
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.7 no.5
    • /
    • pp.801-804
    • /
    • 2006
  • [ $GdAlO_3(GAO)$ ] buffer layer for $YBa_2Cu_3O_{7-{\delta}}(YBCO)$ coated superconductor wire was fabricated by sol-gel processing. Precursor solution was prepared by dissolving 1:1 stoichiometric quantaties of gadolinium nitrate hexahydrate and aluminum nitrate nonahydrate in methanol. The solution was spin-coated on $SrTiO_3(STO)$(100) single crystal substrates and heated at $1000^{\circ}C$ for 2h in wet $N_2-5%\; H_2$, atmosphere. A SEM(scanning electron microscopy) observation of the surface morphology of the GAO layer has shown that it has a faceted morphology indicating epitaxy. It was shown from x-ray diffraction(XRB) that GAO buffer layer was highly c-axis oriented epitaxial thin film with both good out-of-plane($FWHM=0.29^{\circ}$ for the (002) reflection) and in-plane ($FWHM=1.10^{\circ}$ for the {112} reflection) alignment.

  • PDF

Effects of Mesh Size in a Flat Evaporator and Condenser Cooling Capacity on the Thermal Performance of a Capillary Pumped Loop

  • Boo, Joon-Hong
    • Journal of Mechanical Science and Technology
    • /
    • v.14 no.1
    • /
    • pp.121-129
    • /
    • 2000
  • The thermal performance of a flat evaporator for capillary pumped loop (CPL) applications was investigated. Two to four layers of coarse wire screen wicks were placed onto the heated surface to provide irregular passages for vapor flow. The evaporator and condenser were separated by a distance of 1.2 m and connected by individual liquid and vapor lines. The wall material was copper and the working fluid was ethanol. The experimental facility utilized a combination of capillary and gravitational forces for liquid return, and distribution over the evaporator surface. The tubing used for vapor and liquid lines was 9.35 mm or less in diameter and heat was removed from the condenser by convection of air. A heat flux of up to $4.9{\times}10^4$ $W/m^2$ was applied to a flat evaporator having dimensions of 100 mm by 200 mm, 20 mm thick. The thermal resistance of the system as well as the temperature characteristics of the system was investigated as the evaporator heat flux and the condenser cooling capacity varied. The performance of the evaporator and effect of condenser cooling capacity were analyzed and discussed.

  • PDF

Emission test of a domestic fabricated cathode with higher current density

  • Ju, Yeong-Do;Gong, Hyeong-Seop;Kim, Seung-Hwan;Tanwar, Anil;Seok, Yeong-Eun;Lee, Byeong-Jun;Hong, Yong-Jun;Sin, Jin-U;So, Jun-Ho
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.205.2-205.2
    • /
    • 2016
  • The emission test a domestic fabricated cathode is conducted using an easy-replaceable-emitter-type test bench. A simple cylindrical button type cathode is dropped vertically into a cathode cup holder. The cathode is heated by a tungsten wire heater located around the cup holder. The cathode temperature is measured by an optical pyrometer. A high voltage pulse power supply gives the anode-cathode gap voltage up to 20 kV with the pulse width of 15 us. The emitted current from the cathode is captured at a faraday cup and is measured using current transformer and oscilloscope. The test bench is installed in the vacuum chamber with easy access door and, therefore, the cathode can be easily replaceable. We confirmed the emission current density of $15A/cm^2$ and $80A/cm^2$ with a domestic fabricated B-type cathode and a Scandate cathode, respectively. The detailed test result for the cathode will be presented.

  • PDF

A Study on the Identification of Electrical Materials by a Fire (화재로 인한 전기재료 감식에 관한 연구)

  • 박남신;홍진웅;조경순
    • Fire Science and Engineering
    • /
    • v.6 no.1
    • /
    • pp.90-98
    • /
    • 1992
  • Over the last 100 years since the introduction of electricity, the nation has faced ever increasing demand for electricity as consequence of the rapid economic growth. The expanded consumption ratio for electricity naturally increased the possibility for electricity related accident mainly iii the form of electrically ignited fire and human injuries from electric shock. Under such circumstances, the presented study sets a focus on analysing the causes of the electrically related fire accidents happened in the nation over the last 10 years(in the 80's) to provide a scientific basis for identifying the cause of electric fires. Identification of the cause of fire ignited electrically may be approached either by studying accident related electrical properties or by investigating power instruments at the place of the accient. In the present paper, the former approach is taken especially on investigating the consequences of over current induced by short circuiting of high power instruments which is reported as the primary cause electricity related fire accidents. In order to provide reliability of the identification method, microscopic photograph's are taken for the cross sections of the electrical materials(fuse, wire, plug socket and plug) after being exposed to over current and heated by external means respectively. The results are consequently compared and analysed.

  • PDF