• Title/Summary/Keyword: Heat-up time

Search Result 574, Processing Time 0.033 seconds

Effects of Rice Bran Dietary Fiber Extract on Gelatinization and Retrogradation of Wheat Flour (미강 식이섬유 추출물이 밀가루의 호화 및 노화에 미치는 영향)

  • Kim, Young-Soo;Ha, Tae-Youl;Lee, Sang-Hyo;Lee, Hyun-Yu
    • Korean Journal of Food Science and Technology
    • /
    • v.29 no.3
    • /
    • pp.464-469
    • /
    • 1997
  • Rapid visco-analyzer (RVA) and differential scanning calorimetry (DSC) were used to study the effect of rice bran dietary fiber extract on gelatinization and retrogradation of wheat flour. The addition of rice bran dietary fiber extracts from various heat treated bran into wheat flour caused to increase the pasting temperature, peak viscosity and final viscosity of RVA measurements. For gelatinization measured with DSC, mixtures of wheat flour and rice bran dietary fiber extract had slightly higher To (onset temperature) and Tp (peak temperature) values than those of control (wheat flour), and wheat flour/defatted rice bran dietary fiber extract mixture had the lowest enthalpy value. In comparison with gelatinization, the retrogradation endotherm of mixtures stored at $4^{\circ}C$ up to 4 weeks occurred at about $20^{\circ}C$ lower temperatures than gelatinization endotherm with broader shape and well-defined thermograms with storage time. The retrogradation of wheat flour was retarded greatly by addition of rice bran dietary fiber extract, and there was no big difference between 5% and 10% additions.

  • PDF

A Study on Thermal Analytical Model for a Dry Dual Clutch (건식 듀얼 클러치의 열해석 모델에 대한 연구)

  • Liu, Hao;Lee, J.C.;Noh, Y.J.;Cho, J.H.;Lee, H.R.;Koh, J.E.;Kang, J.W.
    • Journal of Drive and Control
    • /
    • v.12 no.1
    • /
    • pp.1-8
    • /
    • 2015
  • The stability of friction characteristics and thermal management for a dry type dual clutch transmission (DCT) are inferior to those of a wet clutch. Too high temperature resulting from frequent engagement of DCT speeds up degradation or serious wear of the pressure plate or burning of the clutch disk lining. Even though it is significantly important to estimate the temperature of a dry double clutch (DDC) in real-time, few meaningful study of the thermal model of DDC has been known yet. This study presented a thermal analytical model of lumped parameters for a DDC by analyzing its each component firstly. Then a series of experimental test was carried out on the test bench with a patented temperature telemetry system to validate the proposed thermal model. The thermal model, whose optimal parameter values were found by optimization algorithm, was also simulated on the experimental test conditions. The simulation results of DDC temperature show consistency with the experiment, which validates the proposed thermal model of DDC.

Properties of High Performance Concrete Corresponding to the Replacement Ratio of the Blast Furnace Slag (고로슬래그 미분말의 치환율 변화에 따른 고성능 콘크리트의 특성분석)

  • Kim, Seoung-Hwan;Son, Ho-Jung;Pei, Chang-Chun;Han, Min-Cheol;Baek, Joo-Hyun;Han, Cheon-Goo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.669-672
    • /
    • 2008
  • To analyze possibility for high performance concrete that massively displaces blast furnace slag, this study analyzed the characteristics of concrete by blast furnace slag displacement rate changes, and the results are summarized as follows. Firstly, as for fresh concrete characteristics, flow tended to increase and air amount decreased with increase in blast furnace slag displacement rate, and settling time was shown delayed. As for hardened concrete characteristics, in conditions where blast furnace slag displacement rate increased up to 50%, the compressive strength decreased below OPC at early age, however at age 28 days, its level was no less than that of OPC, and as for temperature rise by simple insulation, it decreased as displacement rate increased at early stage of hydration, but in the latter stage, hydration progress slowed down and hydration heat increased.

  • PDF

Use of Adaptive Meshes in Simulation of Combustion Phenomena

  • Yi, Sang-Chul;Koo, Sang-Man
    • Proceedings of the Korea Association of Crystal Growth Conference
    • /
    • 1996.06b
    • /
    • pp.285-309
    • /
    • 1996
  • Non oxide ceramics such as nitrides of transition metals have shown significant potential for future economic impact, in diverse applications in ceramic, aerospace and electronic industries, as refractory products, abrasives and cutting tools, aircraft components, and semi-conductor substrates amid others. Combustion synthesis has become an attractive alternative to the conventional furnace technology to produce these materials cheaply, faster and at a higher level of purity. However he process os highly exothermic and manifests complex dynamics due to its strongly non-linear nature. In order to develop an understanding of this process and to study the effect of operational parameters on the final outcome, numerical modeling is necessary, which would generated essential knowledge to help scale-up the process. the model is based on a system of parabolic-hyperbolic partial differential equations representing the heat, mass and momentum conservation relations. The model also takes into account structural change due to sintering and volumetric expansion, and their effect on the transport properties of the system. The solutions of these equations exhibit steep moving spatial gradients in the form of reaction fronts, propagating in space with variable velocity, which gives rise to varying time scales. To cope with the possibility of extremely abrupt changes in the values of the solution over very short distances, adaptive mesh techniques can be applied to resolve the high activity regions by ordering grid points in appropriate places. To avoid a control volume formulation of the solution of partial differential equations, a simple orthogonal, adaptive-mesh technique is employed. This involves separate adaptation in the x and y directions. Through simple analysis and numerical examples, the adaptive mesh is shown to give significant increase in accuracy in the computations.

  • PDF

Ceramic materials for chair side CAD/CAM (체어사이드 CAD/CAM에서 사용하는 세라믹 소재)

  • Kim, Heechul
    • Journal of the Korean Academy of Esthetic Dentistry
    • /
    • v.23 no.1
    • /
    • pp.16-26
    • /
    • 2014
  • Materials that can be use in CAD/CAM are composite, ceramic, hybrid and metal. Among the available materials, monolithic ceramic technique which is the manufacturing technique using one type of the materials is mainly used in a dental office. It is the technique where final tooth-shaped prostheses are made from the material block and used after polishing or applying heat and that does not require traditional ceramic build-up process. Although shot of esthetic quality, because manufactured within 1 hour the monolithic ceramic technique has advantages such as that treatment can be completed in one day and in one time visit, that stability of the material is high because there are low possibility of distort by not melting and phase transformation, and that it can be easily worked in the office with computer assisted devices. We classified the materials that can be used in this technique based on their generations from clinical stand point.

Effects of a Soaking-Fermentation-Drying Process on the Isoflavone and ${\gamma}$-Aminobutyric acid Contents of Soybean

  • Kim, Tae-Jin;Sung, Chang-Hyun;Kim, Young-Jin;Jung, Byung-Moon;Kim, Eung-Ryool;Choi, Won-Sun;Jung, Hoo-Kil;Chun, Ho-Nam;Kim, Woo-Jung;Yoo, Sang-Ho
    • Food Science and Biotechnology
    • /
    • v.16 no.1
    • /
    • pp.83-89
    • /
    • 2007
  • In our study, lactic acid bacteria (LAB)-fermented whey solutions were applied in the soybean soaking process to minimize bacterial contamination and to enrich the biologically functional components of isoflavone and $\gamma$-aminobutyric acid (GABA). Among the 11 LAB tested, Bifidobacteria infantis and a mixed culture (Lactobacillus acidophilus, Bifidobacteria lactis, and Streptococcus thermophilus; ABT-3) displaying the greatest $\beta$-glucosidase activity were selected to produce improved biologically functional soybean preparations. In the soybean soaking processing (without water spraying), the LAB-cultured 10% whey solution was used to soak and to ferment the soybeans and the fermented soybeans were finally dried by heat-blowing at $55^{\circ}C$. The processing conditions used in this study demonstrated that the final soybean product had a reduced contamination by aerobic and coliform bacteria, compared to raw soybeans, likely due to the decrease in pH during LAB fermentation. The aglycone content of the isoflavone increased up to 44.6 mg per 100 g of dried soybean by the processing method, or approximately 8-9 times as much as their initial content. The GABA contents in the processed samples increased as the processing time of soaking-fermentation proceeded as well. The soybean sample that fermented by ABT-3 culture for 24 hr showed the greatest increase in GABA content (23.95 to 97.79 mg/100 g), probably as a result of the activity of glutamate decarboxylases (GAD) released from the soybean or produced by LAB during the soaking process.

Photoelectrochemical Properties of TiO2 Nanotubes by Well-Controlled Anodization Process (양극산화 제어에 의한 TiO2 나노튜브의 광전기화학 특성)

  • Jeong, Dasol;Kim, Donghyun;Jung, Hyunsung
    • Journal of the Korean institute of surface engineering
    • /
    • v.52 no.6
    • /
    • pp.298-305
    • /
    • 2019
  • We investigated a correlation between morphology and photoelectrochemical properties of TiO2 nanotubes fabricated by well-controlled anodization processes. Anodization in an ethylene-glycol-based electrolyte solution accelerated the rapid grow rate of TiO2 nanotubes, but also cause problems such as delamination at the interface between TiO2 nanotubes and a Ti substrate, and debris on the top of the nanotube. The applied voltages for the anodization of TiO2 were adjusted to avoid the interface delamination. The heat treatment and the anodizing time were also controlled to enhance the crystallinity of the as-prepared TiO2 nanotubes and to increase the surface area with the varied length of the anodized TiO2 nanotubes. Additionally, a 2-step anodization process was utilized to remove the debris on the tube top. The photoelectrochemical properties of TiO2 nanotubes prepared with the carefully tailored conditions were investigated. By removing the debris on TiO2 nanotubes, applied bias photon-to-current efficiency (ABPE) of TiO2 nanotubes increased up to 0.33%.

Economic Benefit Analysis of Urban Meteorological Information Service Using Contingent Valuation Method (조건부가치측정법을 이용한 도시기상정보서비스의 경제적 편익 분석)

  • Cho, Youngsang;Koo, Yoonmo;Lee, Jongsu;Lee, Joong-Woo
    • Environmental and Resource Economics Review
    • /
    • v.20 no.4
    • /
    • pp.643-662
    • /
    • 2011
  • As the concentration of people in urban area become severe and abnormal meteorological disasters such as regional torrential rains, heavy snows, sweltering heat, and so on have been increasing, the interest on the urban meteorological information service, which considers the specific characteristics of metropolitan areas in weather forecasting, are also increasing. The urban meteorological information service is one of up-to-date technologies which observes urban weather in a more microscale perspective compared to the present weather forecasting system and provides useful meteorological information which is specialized for metropolises in real time. Therefore, urban meteorological information service is expected to contribute to the increase in quality of life for citizens and to the development of industry in urban areas. In this study, we estimate the economic benefit of the urban meteorological information service using contingent valuation method with survey data of the citizens who are expected to be the direct customers of this new information service. As a result, we conclude that the household is willing to pay 5,963 Korean won per year on average, during a period of five years, for receiving this meteorological information service, and this willingness-to-pay is varied by the socio-economic characteristics of head of the household.

  • PDF

Study of Non Sintered Cement Mortar Using Nanoslag and Alkali Activator (나노슬래그와 알칼리 자극제를 활용한 비소성 시멘트 모르타르에 관한 연구)

  • Jeong, Sung-Wook;Lim, Nam-Gi
    • Journal of the Korea Institute of Building Construction
    • /
    • v.10 no.6
    • /
    • pp.61-66
    • /
    • 2010
  • As global warming has had harmful effects on the environment, the construction industry has made efforts to reduce the amount of $CO_2$ generated in the process of cement production. There is an urgent need for an alternative material that can replace cement. To improve the initial strength and economical efficiency pointed out as problems, this research was conducted for Blast Furnace Slag (BFS), an industrial byproduct. Non-sintering cement (NSC) was used by minimizing the amount of high-priced alkali activators. By using Nano-technology, fineness has been maximized, to enhance the initial strength of BFS. This research is based on non-sintered cement replaced by nano-slag using alkali activators, and the fundamental properties and quality of the non-sintered cement were investigated. A variety of activators were used, up to 10 percent of the slag weight. This research aims to present fundamental data through a comparative analysis of flexural strength, compressive strength, time of setting, diabetic temperature, and rising heat.

A DYNAMIC SIMULATION OF THE SULFURIC ACID DECOMPOSITION PROCESS IN A SULFUR-IODINE NUCLEAR HYDROGEN PRODUCTION PLANT

  • Shin, Young-Joon;Chang, Ji-Woon;Kim, Ji-Hwan;Park, Byung-Heung;Lee, Ki-Young;Lee, Won-Jae;Chang, Jong-Hwa
    • Nuclear Engineering and Technology
    • /
    • v.41 no.6
    • /
    • pp.831-840
    • /
    • 2009
  • In order to evaluate the start-up behavior and to identify, through abnormal operation occurrences, the transient behaviors of the Sulfur Iodine(SI) process, which is a nuclear hydrogen process that is coupled to a Very High Temperature Gas Cooled Reactor (VHTR) through an Intermediate Heat Exchanger (IHX), a dynamic simulation of the process is necessary. Perturbation of the flow rate or temperature in the inlet streams may result in various transient states. An understanding of the dynamic behavior due to these factors is able to support the conceptual design of the secondary helium loop system associated with a hydrogen production plant. Based on the mass and energy balance sheets of an electrodialysis-embedded SI process equivalent to a 200 $MW_{th}$ VHTR and a considerable thermal pathway between the SI process and the VHTR system, a dynamic simulation of the SI process was carried out for a sulfuric acid decomposition process (Second Section) that is composed of a sulfuric acid vaporizer, a sulfuric acid decomposer, and a sulfur trioxide decomposer. The dynamic behaviors of these integrated reactors according to several anticipated scenarios are evaluated and the dominant and mild factors are observed. As for the results of the simulation, all the reactors in the sulfuric acid decomposition process approach a steady state at the same time. Temperature control of the inlet helium is strictly required rather than the flow rate control of the inlet helium to keep the steady state condition in the Second Section. On the other hand, it was revealed that the changes of the inlet helium operation conditions make a great impact on the performances of $SO_3$ and $H_2SO_4$ decomposers, but no effect on the performance of the $H_2SO_4$ vaporizer.