• Title/Summary/Keyword: Heat-treatment temperature

Search Result 3,059, Processing Time 0.032 seconds

Thermal diffusion behaviors of electrogalvanized steel sheets (전기아연도금강판의 열확산 거동)

  • 김영근
    • Journal of the Korean institute of surface engineering
    • /
    • v.28 no.5
    • /
    • pp.320-328
    • /
    • 1995
  • The electroplated steel sheets were heated during the short periods(10~60 seconds) at high temperature ($360^{\circ}C$$500^{\circ}C$) in order to investigate thermal diffusion behaviors. When the steel sheets were heated for 10 seconds, all the coated layers were alloyed at $420^{\circ}C$ but at temperature lower than $400^{\circ}C$ the $\eta$ phase partially remained on the coated surface. At higher temperature, the longer the time for heat treatment the iron contents were increased in coated layer but the glossiness and whiteness of the coated surface were decreased. While the alloying phases of $\eta$, $\zeta$, $\delta_1$ and $\Gamma$ were appeared in the coated layer at the heat treatment temperature of $360^{\circ}C$, the phase was disappeared at $420^{\circ}C$ but the rests grew in size at the temperature of $440^{\circ}C$. When the heat treatment temperature and heating time were increased, the thickness of $\Gamma$ phase was rapidly increased to 0.8 $\mu\textrm{m}$. The optimum conditions for the heat treatment to prevent powdering of coated layer were obtained to heat it for 30 seconds at $400^{\circ}C$ and 10 seconds at $440^{\circ}C$, and the iron content in coated layer was suited to be 10 percents.

  • PDF

Corrosion Resistance Characteristics of Cold Rolled Steel by Cr-free Green Organic/Inorganic Hybrid Coating Solution (크롬 프리 친환경 유/무기 하이브리드 코팅액에 의한 냉연강판의 내식특성)

  • Nam, Ki Woo;Kim, Jung Ryang;Choi, Chang Min
    • Journal of Ocean Engineering and Technology
    • /
    • v.27 no.2
    • /
    • pp.33-38
    • /
    • 2013
  • In the past, a very popular method for reducing the corrosion on zinc involved the use of chemical conversion layer coatings based on $Cr^{+6}$. However, there is an important problem with using chromium salts as a result of restrictive environmental protection legislation. This study investigated the optimum condition for galvanized steel using an organic/inorganic solution with a Ti composition. In the case of a fixed heat treatment time, the corrosion resistance values of LR-0727(1) and LR-0727(2) were improved as the heat treatment temperature increased, and the optimum minimum temperature decreased with the heat treatment time. At the optimum heat treatment condition of two coating solutions, the heat treatment time of the LR-0727(1) solution was shorter than LR-0727(2) for the same heat treatment temperature. LR-0727(1) coated specimens did not show desquamation, and all of the specimens showed a good adhesive property. In contrast, in the case of the LR-0727(2) coated specimens, desquamation arose. Therefore, the adhesive property of LR-0727(1) was superior to that of LR-0727(2). The pencil hardness had a 3H average for all of the coating solutions and heat treatment conditions. In the case of a corrosion resistance test with boiling water, the coated specimens of LR-0727(1) were discolored, but LR-0727(2) was not. Finally, LR-0727(1) was more moisture proof than LR-0727(2).

Thermal Stability of Silicon-containing Diamond-like Carbon Film (실리콘 함유 DLC 박막의 내열특성)

  • Kim, Sang-Gweon;Kim, Sung-Wan
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.23 no.2
    • /
    • pp.83-89
    • /
    • 2010
  • Diamond-like carbon (DLC) coating was studied to be a good tribological problem-solver due to its low friction characteristics and high hardness. However, generally hydrogenated DLC film has shown a weak thermal stability above $300^{\circ}C$. However, the silicon doping DLC process by DC pulse plasma enhanced chemical vapor deposition (PECVD) for the new DLC coating which has a good characterization with thermal stability at high temperature itself has been observed. And we were discussed a process for optimizing silicon content to promote a good thermal stability using various tetramethylsilane (TMS) and methane gas at high-temperature. The chemical compositions of silicon-containing DLC film was analyzed using X-ray photoelectron spectroscopy (XPS) before and after heat treatment. Raman spectrum analysis showed the changed structure on the surface after the high-temperature exposure testing. In particular, the hardness of silicon-containing DLC film showed different values before and after the annealing treatment.

Effects of Heat Treatment on the Nutritional Quality of Milk: V. The Effect of Heat Treatment on Milk Enzymes (우유의 열처리가 우유품질과 영양가에 미치는 영향: V. 열처리가 우유효소에 미치는 영향)

  • Shin, Hanseob;Oh, Sejong
    • Journal of Dairy Science and Biotechnology
    • /
    • v.36 no.1
    • /
    • pp.49-71
    • /
    • 2018
  • Heat treatment is the most popular processing technique in the dairy industry. Its main purpose is to destroy the pathogenic and spoilage bacteria in order to ensure that the milk is safe throughout its shelf life. The protease and lipase that are present in raw milk might reduce the quality of milk. Plasmin and protease, which are produced by psychrotrophic bacteria, are recognized as the main causes of the deterioration in milk flavor and taste during storage. The enzymes in raw milk can be inactivated by heat treatment. However, the temperature of inactivation varies according to the type of enzyme. For example, some Pseudomonas spp. produce heat-resistant proteolytic and lipolytic enzymes that may not be fully inactivated by the low temperature and long time (LTLT) treatment. These types of enzymes are inhibited only by the high temperature and short time (HTST) or ultra-high temperature (UHT) treatment of milk.

Influence of Heat-treatment Temperature on Microwave Absorbing Properities of Ni-Zn Ferrite (Zi-Zn Ferrite의 전파흡수특성에 미치는 열처리온도의 영향)

  • 조성백;권경일;최경구;김성수;김재묵
    • Journal of the Korean Ceramic Society
    • /
    • v.29 no.3
    • /
    • pp.177-182
    • /
    • 1992
  • The effect of heat-treatment temperature on the microwave absorbing properties was investigated in Ni0.8Zn0.2Fe2O4 specimens. The composite specimens were prepared by modling and curing the mixture of prereacted ferrite powder and silicone rubber. The measurement of complex permeability and permittivity was made by the reflection/transmission method. The most sensitive material constants with heat-treatment temperature is the imaginary (loss) component of permeability. The higher the heat-treatment temperature, the greater the magnetic loss. The composite specimens with high magnetic loss exhibited superior microwave absorbing properties. The quantitative estimation of microwave absorbing properties were made by plotting the observed material constants on the calculated solution map of impedance-matching.

  • PDF

Study on the optimum hot forming temperature and solution heat treatment temperature for the super duplex stainless steel weld (수퍼 이상 스테인리스강 용접부의 최적 열간 성형온도 및 용체화 열처리 온도에 관한 연구)

  • Ji Chun-Ho;Choi Jun-Tae;Kim Dae-Sun
    • Proceedings of the KWS Conference
    • /
    • 2006.05a
    • /
    • pp.137-139
    • /
    • 2006
  • In order to establish the optimum hot forming temperature and solution heat treatment temperature for 25% chromium super duplex stainless steel weld, a commercial 25%Cr-10%Ni-4%Mo weld metal for super duplex stainless steel(UNS S32750) with different solution heat treatment conditions at $1100^{\circ}C,\;1050^{\circ}C,\;1025^{\circ}C\;and\;1000^{\circ}C$ for 1.5 hours has been investigated by means of optical metallography, and estimated mechanical properties. It is found that exposure to elevated temperatures at $1050^{\circ}C,\;1025^{\circ}C\;and\;1000^{\circ}C$ except $1100^{\circ}C$ brings partial decomposition of ferrite to austenite and sigma phase, which deteriorates their properties and heat treatment at $1100^{\circ}C$ shows acceptable mechanical properties.

  • PDF

A Study on Surface Case Hardening of Blend Heat Treated Mild Steel (복합열처리(複合熱處理)한 연강(軟鋼)의 표면경화(表面硬化)에 관한 연구)

  • Chung, In-Sang;Chon, Hae-Dong;Sin, Soug-Mok
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.5 no.1
    • /
    • pp.23-31
    • /
    • 1992
  • It is investigated that Fe-C-N compound layer, defusion layer, and induction hardened layer produced by nitrocarburizing blend heat treatment in austenitic temperature with high frequency induction heating of mild steel specimen sprayed sursulf salt-bath. As the temperature of blend-heat treatment got increased, the thickness and hardness of compound layer and diffusion layer were increased. Compound layer(max. $35{\mu}m$), diffusion layer (max. 2.5mm) and induction hardened layer were gained in the shortest time 10 sec and in the case of $1000^{\circ}C$ total hardness depth of those was about 3.5mm. When the blend-heat treated specimen was reheated, maximum hardness of compound layer was dropped more than that of the reheated compound layer after sursulf treated, whereas hardness of diffusion layer was increased.

  • PDF

Heat Treatment Properties of Water Atomized Iron Powder for Powder Metallurgy (분말야금용 수분사 철분의 열처리 특성)

  • Kim, Y.C.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.9 no.1
    • /
    • pp.62-68
    • /
    • 1996
  • In order to establish making process of water atomized iron powder for powder metallurgy, effect of heat treatment condition on change of powder properties and impurities was investigated at each tempeature of $850{\sim}950^{\circ}C$. The results are as follows. Particle morphology of iron powder changed slightly from sphercial type to irregular type and the amount of fine particle decreased more and more with increasing of heat treatment time at each temperature. The flow rate and apparent desity of iron powder also decreased due to particle coalescence in order of $850^{\circ}C$, $950^{\circ}C$, $900^{\circ}C$. Those powder Properties became to decrease particularly at $900^{\circ}C$ in alpha iron region. On the other hand, residual carbon and oxygen contents in iron powder decreased extremely with increasing of heat treatment temperature and time.

  • PDF

Analysis of Deformation of Automotive Helical Gear in Heat Treatment of Carburized Quenching (차량용 헬리컬기어의 침탄 열처리 변형해석)

  • Bae, Kang-Yul;Yang, Young-Soo;Park, Byung-Ok
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.27 no.11
    • /
    • pp.84-91
    • /
    • 2010
  • Heat treatment with carburized quenching process is widely used for automotive helical gear to improve its surface properties of hardness and strength. However, the gear can be deformed with the process over the allowable tolerance, which possibly makes noise, vibration and heat problems in operation. In this study, deformation of helical gear during heat treatment of carburized quenching was analyzed with a numerical method, incorporating coupled calculations of thermal conduction, carbon diffusion, phase transformation and thermal stresses. With the analysis, the effect of coolant temperature in quenching on the deformation was investigated. The result of the analysis revealed that the higher the coolant temperature became, the more change of helix angle and the more compressive stresses in the surface generated, because of delayed generation of martensite in the part.