• 제목/요약/키워드: Heat-treatment deformation

검색결과 294건 처리시간 0.024초

구성 모델과 공정 지도를 이용한 AISI 4340강의 고온 변형 거동 (Hot Deformation Behavior of AISI 4340 using Constitutive Model and Processing Map)

  • 김근학;정민수;이석재
    • 열처리공학회지
    • /
    • 제30권5호
    • /
    • pp.187-196
    • /
    • 2017
  • High temperature flow behaviors of AISI 4340 steel were investigated using isothermal compression tests under the temperature range from 850 to $1100^{\circ}C$ and a strain rate from 0.01 to $10s^{-1}$. The flow stress decreased with increasing compression temperature and decreasing strain rate. The dynamic softening related to the dynamic recrystallization was observed during hot deformation. The constitutive model based on Arrheniustyped equation with the Zener-Hollomon parameter was used to simulate the hot deformation behavior of AISI 4340 steel. The modification of the Zener-Hollomon parameter and lnA parameter resulted in the improvement of the calculation accuracy of the proposed constitutive model compared with the experimental flow curves. In addition, the process map of AISI 4340 steel was proposed. The instable process condition for hot deformation was predicted and its reliability was verified with the experimental observation.

유한요소법을 이용한 탄소강의 경화특성에 관한 연구 (A Study on Hardening Characteristics of Carbon Steel by Using Finite Element Method)

  • 황현태;소상우;김종도
    • 열처리공학회지
    • /
    • 제24권4호
    • /
    • pp.203-208
    • /
    • 2011
  • Recently, from general machine parts and automobile parts using carbon steel to a mold, there has been efforts for improving durability and attrition resistance of these parts. Especially, heat treatment with laser which works fast and automatically can be used for the mass production with high quality. Moreover, local heat treatment can be used to handle with complex and precise parts. Accordingly, we analyzed hardening characteristics of carbon steel using the finite element method and compare the experimental results to have more reliability. We also proved the cause of thermal deformation with temperature and stress distribution by heat treatment. After these analysis and experimental, we found that each maximum hardness of the two tests was 728 Hv and 700 Hv, on condition of $1050^{\circ}C$ heating temperature, and 2 mm/sec laser speed. We also found that difference of surface stress-distribution was occurred, and this makes deformation mode up after heat treatment.

나노표면 영역에서의 ECAP 변형된 알루미늄합금의 기계적 물성변화 측정 (Determination of Mechanical Properties of Equal Channel Angular Pressed Aluminum Alloys in Nano-surface Region)

  • 안성빈;김정석
    • 열처리공학회지
    • /
    • 제32권3호
    • /
    • pp.113-117
    • /
    • 2019
  • The effects of severe plastic deformation and heat treatment on the mechanical properties of Al 5052 and 6005 alloys were investigated using the metallurgical technique and nano-indentation technique in nano-surface region. Equal channel angular pressing (ECAP) was used to apply severe plastic deformation to the aluminum alloys in order to obtain fine grain sized materials. The elastic modulus was measured and interpreted in relation to the metallurgical observation. The elastic modulus increased after ECAP process due to evolution of the fine grains. However, the elastic modulus decreased after heat treatment due to generation of coarsened precipitates on the grain boundaries.

Fe-Mn계 합금에서 응력유기 ${\varepsilon}$ 마르텐사이트의 양에 미치는 열처리 온도의 영향 (Effect of Heat Treatment Temperature on Amount of Stress-Induced ${\varepsilon}$ Martensite in an Fe-Mn Baesd Alloy)

  • 지광구;한준현;장우양
    • 열처리공학회지
    • /
    • 제17권6호
    • /
    • pp.342-345
    • /
    • 2004
  • In this work, a new method of measuring volume fraction of deformation-induced ${\varepsilon}$ martensite is proposed using endothermic heat on reverse transformation. As grain size increases, the amount of ${\varepsilon}$ martensite forming on cooling increases. However, with a decrease in grain size, more ${\varepsilon}$ is induced by deformation, improving shape memory effect.

신선 가공된 열처리 생략강의 냉간 성형성에 대한 연구 (Study on the Cold Formability of Drawn Non-heat Treated Steels)

  • 박경수;박용규;이덕락;이종수
    • 소성∙가공
    • /
    • 제12권4호
    • /
    • pp.364-369
    • /
    • 2003
  • Non-heat treated steels are attractive in the steel-wire industry since the spheroidization and quenching-tempering treatment are not involved during the processing. However, non-heat treated steels should satisfy high strength and good formability without performing heat treatment. Therefore, it is important to investigate optimum materials showing a good combination of strength and formability after the drawing process. In this study, three different steels such as dual phase steel, low-Si steel, and ultra low carbon bainitic steel were used to study their mechanical properties and the cold formability. The cold formability of three steels was investigated by estimating the deformation resistance and the forming limit. The deformation resistance was estimated by calculating the deformation energy, and the forming limit was evaluated by measuring the critical strain revealing crack initiation at the notch tip of the specimens. The results showed that deformation resistance was the lowest in the low-Si steel, and the forming limit strains of ultra low carbon bainitic steel and low-Si steel were higher than that of commercial SWRCH45F steel.

표면처리 및 윤활제에 따른 열간 단조 금형의 수명 평가 (Die Life Estimation of Hot Forging for Surface Treatment and Lubricants)

  • 이현철;김병민;김광호
    • 한국정밀공학회지
    • /
    • 제20권7호
    • /
    • pp.26-35
    • /
    • 2003
  • This study explains the effects of lubricant and surface treatment on hot forging die life. The mechanical and thermal load, and thermal softening which is happened by the high temperature of die, in hot and warm forging, cause die wear, heat checking and plastic deformation, etc. This study is fur the effects of solid lubricants and surface treatment condition for hot forging die. Because cooling effect and low friction are essential to the long life of dies, optimal surface treatment and lubricant are very important to improve die life for hot forging process. The main factors, which affect die hardness and heat transfer, are surface treatments and lubricants, which are related to thermal diffusion coefficient and heat transfer coefficient, etc. For verifying these effects, experiments are performed for hot ring compression test and heat transfer coefficient in various conditions as like different initial billet temperatures and different loads. The effects of lubricant and surface treatment for hot forging die life are explained by their thermal characteristics. The new developed technique in this study for predicting tool life can give more feasible means to improve the tool life in hot forging process.

Ti-Ni-B 형상기억합금의 마르텐사이트변태 및 인장변형거동에 미치는 열처리의 영향 (Effect of Heat Treatment on the Martensitic Transformation and Tensile Deformation Behavior in Ti-Ni-B shape Memory Alloy)

  • 이오연;박영구;안행근
    • 열처리공학회지
    • /
    • 제8권1호
    • /
    • pp.75-83
    • /
    • 1995
  • The purpose of this study is to investigate the effect of heat treatments on the martensite transformation and tensile deformation behavior in Ti-Ni-B alloys with various boron concentration. Three types of heat treatment are given to the specimens; i) solution treatment ii) aging iii) thermo-mechanical treatment. In solution treated specimens. R-phase transition which is related to abnormal increase of electrical resistance prior to martensitic transformation has been formed at a boron content of 0.2at % and the $M_s$ temperature has been decreased with the increasing of boron content. However. It has not been affected by aging, while that of thermo-mechanically treated specimens has been remarkably increased in the vicinity of recrystallization temperature. The thermo-mechanically treated specimen has showed a good thermal fatigue characteristics, shape memory effect and superelasticity in comparison with the solution treated specimen.

  • PDF

초음파 비선형파라미터를 이용한 무산소동 저주기피로와 2.25Cr 페라이트강의 등온열화 평가 (Characterization of Low-cycle Fatigue of Copper and Isothermal Aging of 2.25Cr Ferritic Steel by Ultrasonic Nonlinearity Parameter)

  • 김정석
    • 열처리공학회지
    • /
    • 제35권5호
    • /
    • pp.239-245
    • /
    • 2022
  • The purpose of this study is to evaluate the degree of microstructural change of materials using ultrasonic nonlinear parameters. For microstructure change, isothermal heat-treated ferritic 2.25Cr steel and low-cycle fatigue-damage copper alloy were prepared. The variation in ultrasonic nonlinearity was analyzed and evaluated through changes in hardness, ductile-brittle transition temperature, electron microscopy, and X-ray diffraction tests. Ultrasonic nonlinearity of 2.25Cr steel increased rapidly during the first 1,000 hours of deterioration and then gradually increased thereafter. The variation in non-linear parameters was shown to be coarsening of carbides and an increase in the volume fraction of stable M6C carbides during heat treatment. Due to the low-cycle fatigue deformation of oxygen-free copper, the dislocation that causes lattice deformation developed in the material, distorting the propagating ultrasonic waves, and causing an increase in the ultrasonic nonlinear parameters.

연속주조 Al6061 합금의 열처리에 따른 소성변형거동 (Plastic Deformation Behavior of Al6061 depending on Heat Treatment Condition)

  • 박정호;권용남;이영선;이정환
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2004년도 춘계학술대회 논문집
    • /
    • pp.127-130
    • /
    • 2004
  • In the recent years, lightweight components fabricated with aluminum alloys have been applied into building the automobiles. Among the several competing fabrication methods, hot forging is taken as the most reliable technique to produce suspension parts such as control arms. Generally, Al forging products have been used widely for the aircraft building with the extruded stock as a starting material. For the economical base, however, the cast stocks turn to be as the forging stocks recently after a continuously casting technique was developed to produce quite a uniform microstructure enough to use for the forging process. Even more, there is a tendency to omit the homogenization step before forging, which is considered to be an indispensable process for all kinds of Al alloy, In the present study, a series of compression test was carried out to find out how the cast structure and the following heat treatments influence the deformation behavior, that is, forging characteristic.

  • PDF

열처리 냉각방식 변화에 따른 SCr420HB 헬리컬 기어 시뮬레이션 적용에 관한 연구 (A Study on SCr420HB Helical Gear Deformative Simulation by Heat Treatment Quenching Method)

  • 변재혁;변상덕;이창헌
    • 열처리공학회지
    • /
    • 제28권1호
    • /
    • pp.24-31
    • /
    • 2015
  • In this study, a simulation was used to derive an optimal process of heat treatment with carburizing, and compared the derived result with SCr420HB helical gear in heat treatment with carburized quenching process about a change of the quenching method. The optimal carburizing process time is derived by the simulation with the theoretical time. The process has been performed by oil quenching and salt quenching method. Through the comparison of the results from the simulation(Hardness, effective case depth hardened by carburizing treatment and deformation) and the actual process, analyzed the error value of each quenching. And it verified the applicability of the simulation.