• 제목/요약/키워드: Heat-stress

검색결과 2,810건 처리시간 0.033초

FAC 및 CGS 치환율에 따른 매스 콘크리트의 수화열 해석 (Hydration Heat Analysis of Mass Concrete according to FAC and CGS Replacement Rates)

  • 김수호;백성진;한수환;한준희;김종;한민철
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2022년도 봄 학술논문 발표대회
    • /
    • pp.158-159
    • /
    • 2022
  • This study analyzed the temperature stress through mixtures mass concrete hydration heat analysis according to the replacement rates of FAC and CGS. As a result of the analysis, it was possible to confirm the effect of reducing hydration heat when CGS is substituted for the low heat mixture of mass concrete. However, the stress of the FAC+CGS combination exceeded the tensile stress. It is believed that it is necessary to apply the insulating sheet of the surface part and reduce the unit weight of cement.

  • PDF

주름형상 판형열교환기 채녈에서의 열전달 특성 수치해석적 연구 (Numerical Analysis of Heat Transfer Characteristics in Corrugated Plate Type Heat Exchanger Channel)

  • 김태용;이재용;김남진;김종보
    • 설비공학논문집
    • /
    • 제13권7호
    • /
    • pp.588-594
    • /
    • 2001
  • The purpose of this study is to investigate the thermal and hydrodynamic characteristics of the channel in corrugated plate type heat exchangers numerically. Numerical work has been conducted using the Reynolds Stress Model(RSM) by utilizing the commercial finite-volume code, FLUENT. Based on this model, the dependence of heat transfer and friction factor on geometrical parameters have been investigated. It is found that larger corrugation angle give higher values of heat transfer coefficients and friction factors. As the reynolds number increases, the heat transfer coefficient also increases. It is also observed that the heat transfer coefficient reaches maximum while the friction factor stays relatively low at same corrugation angle. Through the analysis, it is found that the optimum corrugation angle for the heat exchanger performance exists. It is noted that the flow repulsions at the contact point of the two fluid streams make the low mixing more active for larger corrugation angle and high reynolds number.

  • PDF

흰쥐 적출대동맥의 수축력에 미치는 열과 Nacl의 영향

  • 박태규;김종일;성유진;김인겸;김중영
    • 한국환경생물학회:학술대회논문집
    • /
    • 한국환경생물학회 2003년도 학술대회
    • /
    • pp.86-91
    • /
    • 2003
  • In this study, in order to examine whether salt and heat shock stress would alter or not contraction and relaxation of isolated rat aorta. Under anesthesia with sodium pentobarbital(50 mg Kg$^{-1}$ i.p.), male Sprague Dawley rats weighing 300-330 g were subjected to 0, heat shock combined salt stress, where as the sham group was left at modified Krebs-bicarbonate solution. To measure contractile response of vascular ring preparation isolated from rat was determined in organ bath and was recorded on physiograph connected to isometric transducer. And the strip was checked for expression of heat shock protein(Hsps) by means of western blotting. The combination group of heat and 50 mM NaCl group increased vascular contractility, and the heat and 150 mM NaCl group decreased vascular contractility for 5 hours, and then recovered for 8 hours compared to that of control. Expressin of Hsp 70 of vascular muscle of rat aorta more increased by combination of heat and NaCl treatment than those of single treatment of heat or NaCl treatment, and vascular Hsp 70 showed a little decrease at 8 hours compared at 5 hours. These result indicate that mixed environmental stress either increased or decreased in vascular contractility by combination of heat and NaCl concentration.

  • PDF

Lactobacillus crispatus KLB46의 스트레스 전처리시 열 내성 증진효과 (Improved Cell Viability of Lactobacillus crispatus KLB46 by Stress Adaptation)

  • 곽대영;강창호;전한을;소재성
    • KSBB Journal
    • /
    • 제29권2호
    • /
    • pp.81-86
    • /
    • 2014
  • Lactobacilli, the dominant species of microorganisms in the vaginal flora of healthy women, play important roles to prevent bacterial vaginosis and other sexually transmitted diseases. In this study, we carried out studies on stress adaptation prior to various stress treatment. We found that heat or salt adapted KLB46 showed higher cell viability than non adapted upon heat stress at $60^{\circ}C$ for 20 min. When chloramphenicol was added during the adaptation process, heat tolerance was abolished. This result suggested that de novo protein synthesis was essential during adaptation.

圓筒管의 圓周熔接時 發生되는 殘留應力에 관한 實驗的 硏究 (The Eexperimental Studies on Residual Stresses due to Circumferential Welds in thin Steel Cylinder)

  • 엄동석;류기열
    • Journal of Welding and Joining
    • /
    • 제15권2호
    • /
    • pp.81-88
    • /
    • 1997
  • The residual stresses produced by a circumferential weld between axisymmetric cylinders are one of the most important problems concerning buckling strength, fatigue strength, stress corrosion cracking in shell structures, and arc quite different from those due to a butt weld between flat plates. This paper presents experimental studies on weld cylinder models of various heat inputs and thin cylinder diameters by blind hole drilling method. As a result, it is certified that weld residual stress (axial stress and hoop stress) is larger, as heat input and shell cylinder diameter are larger, and that experimental results show good agreement with the result of preceding researchers.

  • PDF

기계평면시일의 열응력 크랙에 관한 실험적 연구 (Experimental Investigation of Thermal Stress Cracks in Mechanical Face Seals)

  • 김청균
    • Tribology and Lubricants
    • /
    • 제12권3호
    • /
    • pp.79-84
    • /
    • 1996
  • One of the greatest dangers in mechanical face seals is the formation of heat checking and thermal stress cracks on the sliding surfaces. These thermal distortions due to non-uniform heating lead to increase the leakage of the sealed fluids and wear, and with balance of the seal can cause the seal faces to part. In this study heat checking and thermal stress cracks are investigated experimentally. These thermal distortions are explained using the thermal models of the conatct geometries between the seal ring and the seal seat. To overcome these thermal problems, the thermohydrodynamic seal is presented. The newly developed mechanical seal may substantially reduce the friction torque, frictional heating which causes heat checking and thermal stress cracks, and wear.

발전용 터빈 로우터의 수명예측을 위한 열응력 해석 (Thermal Stress Analysis for Life Prediction of Power Plant Turbine Rotor)

  • 임종순;허승진;이규봉;유영면
    • 대한기계학회논문집
    • /
    • 제14권2호
    • /
    • pp.276-287
    • /
    • 1990
  • In this paper research result of transient thermal stress analysis of power plant turbine rotors for life prediction under severs operating conditions is presented. Galerkin's recurrence scheme is used for numerical solution of discretized FEM equation of transient heat conduction equation. Boundary conditions for the equation and operating conditions are intensively investigated for accurate life prediction of turbine rotors in operation. A computer program for on-site application is developed and tested. Distribution of thermal stress in turbine rotors during various operating condition is analyzed with the program and it is found that the peak thermal stress appears during cold stage conditions at the first stage of high pressure rotors.

외연적 유한요소법을 이용한 적층제조 공정 중 응력 장 변화 계산 (Computation of Stress Field During Additive Manufacturing by Explicit Finite Element Method)

  • 양승용;김정한
    • 한국분말재료학회지
    • /
    • 제27권4호
    • /
    • pp.318-324
    • /
    • 2020
  • In the present work, an explicit finite element analysis technique is introduced to analyze the thermal stress fields present in the additive manufacturing process. To this purpose, a finite element matrix formulation is derived from the equations of motion and continuity. The developed code, NET3D, is then applied to various sample problems including thermal stress development. The application of heat to an inclusion from an external source establishes an initial temperature from which heat flows to the surrounding body in the sample problems. The development of thermal stress due to the mismatch between the thermal strains is analyzed. As mass scaling can be used to shorten the computation time of explicit analysis, a mass scaling of 108 is employed here, which yields almost identical results to the quasi-static results.

Interactions in a homogeneous isotropic modified couple stress thermoelastic solid with multi-dual-phase-lag heat transfer and two temperature

  • Lata, Parveen;Kaur, Harpreet
    • Steel and Composite Structures
    • /
    • 제38권2호
    • /
    • pp.213-221
    • /
    • 2021
  • The objective of this paper is to study the deformation in a homogeneous isotropic thermoelastic solid using modified couple stress theory subjected to ramp-type thermal source with two temperature. The advantage of this theory is the involvement of only one material length scale parameter which can determine the size effects. Laplace and Fourier transform technique is applied to obtain the solutions of the governing equations. The components of displacement, conductive temperature, stress components and couple stress are obtained in the transformed domain. A numerical inversion technique has been used to obtain the solutions in the physical domain. The effect of two temperature is depicted graphically on the resulted quantities. Numerical results show that the proposed model can capture the size effects of microstructures.

Stress Tolerance of Bifidobacterium infantis ATCC 27920 to Mild-heat Adaptation

  • Kang, Seok-U;Kim, Young-Hoon;Cho, In-Shick;Kang, Ja-Heon;Chun, Il-Byung;Kim, Kwang-Hyun;Oh, Se-Jong
    • Food Science and Biotechnology
    • /
    • 제18권1호
    • /
    • pp.249-252
    • /
    • 2009
  • Two-dimensional gel electrophoresis (2-DE) was employed to assess the thermo-tolerance characteristics of Bifrdobacterium infantis ATCC 27920 to mild heat adaptation. When exposed to various heat levels, pH, and hydrogen peroxide ($H_2O_2$) stress conditions, B. infantis ATCC 27920 exhibited high level of stress resistance. Under mild-heat treatment ($46^{\circ}C$), no significant change in viability level was observed after 2 hr. Interestingly, improved viability was observed in mild-heat adapted ($46^{\circ}C$ for 1 hr) cultures exposed to $55^{\circ}C$, in comparison to control experiments. Viability was not affected by pH, bile, and $H_2O_2$ stress conditions. 2-DE analysis revealed those mild-heat adaptation up-regulated 4 proteins and down-regulated 3 proteins. Among these protein spots, isopropyhnalate dehydratase (leuD), glycosyltransferase (glgA), and ribosomal protein L5 (rp1E) were identified by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALD1-TOF/MS).