• Title/Summary/Keyword: Heat-stress

Search Result 2,810, Processing Time 0.031 seconds

Heat Shock Causes Oxidative Stress and Induces a Variety of Cell Rescue Proteins in Saccharomyces cerevisiae KNU5377

  • Kim, Il-Sup;Moon, Hye-Youn;Yun, Hae-Sun;Jin, Ing-Nyol
    • Journal of Microbiology
    • /
    • v.44 no.5
    • /
    • pp.492-501
    • /
    • 2006
  • In this study, we attempted to characterize the physiological response to oxidative stress by heat shock in Saccharomyces cerevisiae KNU5377 (KNU5377) that ferments at a temperature of $40^{\circ}C$. The KNU5377 strain evidenced a very similar growth rate at $40^{\circ}C$ as was recorded under normal conditions. Unlike the laboratory strains of S. cerevisiae, the cell viability of KNU5377 was affected slightly under 2 hours of heat stress conditions at $43^{\circ}C$. KNU5377 evidenced a time-dependent increase in hydroperoxide levels, carbonyl contents, and malondialdehyde (MDA), which increased in the expression of a variety of cell rescue proteins containing Hsp104p, Ssap, Hsp30p, Sod1p, catalase, glutathione reductase, G6PDH, thioredoxin, thioredoxin peroxidase (Tsa1p), Adhp, Aldp, trehalose and glycogen at high temperature. Pma1/2p, Hsp90p and $H^+$-ATPase expression levels were reduced as the result of exposure to heat shock. With regard to cellular fatty acid composition, levels of unsaturated fatty acids (USFAs) were increased significantly at high temperatures ($43^{\circ}C$), and this was particularly true of oleic acid (C18:1). The results of this study indicated that oxidative stress as the result of heat shock may induce a more profound stimulation of trehalose, antioxidant enzymes, and heat shock proteins, as well as an increase in the USFAs ratios. This might contribute to cellular protective functions for the maintenance of cellular homeostasis, and may also contribute to membrane fluidity.

Cloning and Characterization of dnaK Heat Shock Protein Gene in a Halotolerant Cyanobacterium (내염성 cyanobacteria로 부터 danK heat shock protein 유전자의 cloning 및 특성 해명)

  • ;;;Teruhiro Takabe
    • Journal of Life Science
    • /
    • v.11 no.5
    • /
    • pp.464-469
    • /
    • 2001
  • A gene, dnaK2, encoding a distinct member of the HSP70 family of molecular chaperones is isolated from the halotolerant cyanobactrium Aphanothece halophytica. The dnak2 gene encodes a molecular wight of 68 kDa polypeptide with predicted 616 amino acid residues. The DnaK2 protein has a structural characteristic of bacterial DnaK homologues and shows high similarity to other HSP70/Dank proteins. The danK2 transcripts are hardly detectable at 28$^{\circ}C$ and strongly induced upon heat stress. It is also found that dnaK2 transcript is increased by high-salinity stress even in the absence of heat stress. These results suggest that the DnaK2 protein plays an important role in protecting A. halophytica against damage caused by salt stress at well as heat stress.

  • PDF

Characterizing Residual Stress of Post-Heat Treated Ti/Al Cladding Materials Using Nanoindentation Test Method (나노압입시험법을 이용한 후열처리된 Ti/Al 클래딩재의 잔류 응력 평가)

  • Sang-Kyu Yoo;Ji-Won Kim;Myung-Hoon Oh;In-Chul Choi
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.36 no.2
    • /
    • pp.61-68
    • /
    • 2023
  • Ti and Ti alloys are used in the automobile and aerospace industries due to their high specific strength and excellent corrosion resistance. However their application is limited due to poor formability at room temperature and high unit cost. In order to overcome these issues, dissimilarly jointed materials, such as cladding materials, are widely investigated to utilize them in each industrial field because of an enhanced plasticity and relatively low cost. Among various dissimilar bonding processes, the rolled cladding process is widely used in Ti alloys, but has a disadvantage of low bonding strength. Although this problem can be solved through post-heat treatment, the mechanical properties at the bonded interface are deteriorated due to residual stress generated during post-heat treatment. Therefore, in this study, the microstructure change and residual stress trends at the interfaces of Ti/Al cladding materials were studied with increasing post-heat treatment temperature. As a result, compared to the as-rolled specimens, no difference in microstructure was observed in the specimens after postheat treatment at 300, 400, and 500℃. However, a new intermetallic compound layer was formed between Ti and Al when post-heat treatment was performed at a temperature of 600℃ or higher. Then, it was also confirmed that compressive residual stress with a large deviation was formed in Ti due to the difference in thermal expansion coefficient and modulus of elasticity between Ti Grade II and Al 1050.

A Study on Durability Characteristics of Automobile Clutch Diaphragm Spring Steel According to Heat-Treatment Condition (자동차 클러치용 다이아프램 스프링 강(50CrV4)의 열처리 조건에 따른 내구특성에 관한 연구)

  • 남욱희;이춘열;채영석;권재도;배용탁;우승완
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.2
    • /
    • pp.137-143
    • /
    • 2000
  • An automobile clutch diaphragm spring is operating in a closed clutch housing under high temperature and subject to high stress concentration in driving condition, which frequently causes cracks and fracture. The material of spring is required to possess sufficient fatigue strength and tenacity, which depend largely on the condition of tempering heat treatment. In this paper, specimens are made under a number of different tempering temperatures md tested to find the optimal tempering heat treatment condition. The experiments include the verification of microscopic structure, hardness, tensile strength, fatigue crack growth rate, stress intensity factor range and residual stress. Also, decarbonization, which occurs in actual heat treatment process, is measured and allowable decarbonization depth is studied by durability test.

  • PDF

Flow Stress of HSLA Steel by Heat Treatment (열처리한 HSLA 강의 유동특성)

  • Kim J. M.;Choi N. J.;Kang S. S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.05a
    • /
    • pp.178-181
    • /
    • 2004
  • Heat treatment is one of important manufacturing process that determine the quality of the products. Because of a difference of mechanical property by heat treatment, It is necessary to This papers presents flow stress and yield point through tensile test. The goal of this study is to obtain the data of flow stress and yield point at martensite, bainite, ferrite/pearlite phase structure using SCM420, SCr420. The result of tensile test is satisfied and is expected to develop an available FEM analysis.

  • PDF

Analysis of Heat of Hydration and Thermal Stresses in Mass Concrete (매스 콘크리트의 수화열과 온도 응력 해석)

  • 박영진;김진근;전상은;방기성
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.04a
    • /
    • pp.281-286
    • /
    • 1999
  • Nonlinear temperature distribution induced by the hydration heat generates thermal stress in mass concrete. At early ages, such thermal stress may induce thermal cracks in the structure which can affect on the durability and safety of the structure. Up to now, a lot of works have focused on the prediction of temperature distribution and thermal stress in the structure. In most of such works, however, the inside of structure was considered as adiabatic state to predict temperature distribution and the thermal stress. And due to the lacks of appropriate analysis models after crack, there was little research on the crack occurrence. This paper deals with the prediction of the temperature distribution in the structure using the rate of hydration heat generation and also estimates the behavior of structure before and after cracking due to hydration heat using crack band model.

  • PDF

Electromechanical Relationn of metallic heat wires and Its Application to the Estimation of In_situ Stress of Structural Tendons (금속계열선의 전기기계적 상관작용과 긴장력 계측이 가능한 긴장재)

  • Zi Goang-Seup;Jun Ki-Woo
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2006.04a
    • /
    • pp.445-450
    • /
    • 2006
  • It is proposed that the electromechanical relation of the conductive materials with high electrical resistance may be used to estimate the current stress of prestressing tendons. To choose the best conductive material to this end, we studied the electromechanical relations of carbon fibers and metalic heat wires experimentally. It is found that the relation of carbon fibers can be modelled by a parabolic(or hyperbolic) function in the early stage of deformation. However because the relation is not consistent when it is unloaded and reload, carbon fibers are not suitable for this purpose. Metallic heat wires show a consistent linear relation during loading and unloading in the elastic deformation and are suitable for this purpose. To estimate the electromechanics relation of metallic wires, we developed a simple formula based on the rigid plasticity. We propose a new kind of prestressing tendons whose stress can be monitored.

  • PDF

The Effects of Heat Treatment on Intergranular Carbide Precipitations and Intergranular Stress Corrosion Cracking of Inconel alloy (인코넬 합금의 열처리에 따른 입계 탄화물 석출 및 입계응력부식 거동)

  • Maeng, Wan-Young;Nam, Tae-Woon
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.10 no.4
    • /
    • pp.219-231
    • /
    • 1997
  • Inconel alloys used as nuclear power plant components have experienced intergranular stress corrosion cracking problems inspite of their good corrosion characteristics. In order to investigate the effects of heat treatments on carbide precipitation and intergranular stress corrosion cracking(IGSCC) in Inconel alloys, DSC(Differential Scanning Calorimeter), TEM, EDXS and static potential corrosion tests were carried out. Thermal treatment at $750^{\circ}C$ for 15hours in Inconel alloys increased the density of intergranular carbide. The carbides are mainly $Cr_7C_3$ in Inconel 600, and $Cr_{23}C_6$ in Inconel 690. The Cr depletion around grain boundary is not crucial factor on IGSCC. The carbides in grain boundary play an important role as acting dislocation source, and as decreasing stress around growing crack.

  • PDF

Fatigue and Vibration Analysis on Engine Parts (엔진 부품에 대한 피로 및 전동해석)

  • Cho, Jae-Ung;Han, Moon-Sik
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.19 no.3
    • /
    • pp.321-325
    • /
    • 2010
  • This study analyzes the results with the simulation of heat transfer, structural stress, fatigue and vibration on main parts of engine. The maximum temperature is shown by $300.73^{\circ}C$ on the upper part of piston with the heat transfer. Maximum total deformation or equivalent stress is shown by 65.31mm or 21364MPa respectively at the upper plane of piston with the structural analysis inclusive of heat transfer. The minimum life is shown by the cycle less than $10^7$ at the part of crankshaft with the fatigue analysis. The frequency with the maximum amplitude of deformation is shown by 14Hz. Maximum total deformation or equivalent stress is shown respectively by 93.99mm on the upper plane of piston or 42625MPa at the part connected with crack shaft and connecting rod at 14Hz. The durability of engine design can be verified by using the analysed result of this study.

A Study on Thermal Behavior and Stress Characteristics of Discs under Braking Conditions for Automobiles (자동차 브레이크 제동시 디스크의 열적거동 및 응력 특성에 관한 연구)

  • Baek, Il-Hyun
    • Tribology and Lubricants
    • /
    • v.28 no.5
    • /
    • pp.246-251
    • /
    • 2012
  • Disc brakes and brake linings are part of the braking system in automobiles; this system works due to the braking power between the disc and pad. Vehicle braking systems have complex environments due to the geometry of the disk and pad, the material properties, the braking conditions, etc. Braking energy is converted into thermal energy during the braking process, due to the frictional heat between the disc brake and pad. This heat is changed to a heat flux, which affects the thermal stress of the disc. The purpose of this study was to use the fluid dynamics software ANSYS CFX to investigate the inner flow characteristics of the air and the heat transfer of the disc, and to analyze the effects on the thermal stress of the disc brake.