• Title/Summary/Keyword: Heat-pressing

Search Result 188, Processing Time 0.044 seconds

Development of Rice Hull Insulation Board using Urea Formaldehyde Resin (요소수지(尿素樹脂) 연질(軟質) 왕겨보드의 개발(開發))

  • Lee, Hwa-Hyoung;Kang, Chun-Won
    • Journal of the Korean Wood Science and Technology
    • /
    • v.26 no.4
    • /
    • pp.50-55
    • /
    • 1998
  • This study was carried out to develop low density board made of rice hull which needs proper use. Urea formaldehyde adhesive(UF) was used. The raw materials were the mixtures of the rice hulls from IllFum, DongGin, ChuChong, etc. The physical and mechanical properties of rice hull insulation board were examined. The results are as follows : For the thickness of 15mm of the low density rice hull board bonded with UF resin, proper manufacturing conditions were $171^{\circ}C$ of hot pressing temperature with thickness bar for optimum density, 12 percent of resin solid contents of rice hull ovendry weight, and 20 minutes of hot pressing time. These conditions meet Korean standards(KS 3201-1982) in relation to free formaldehyde emission, bending strength, water absorption and heat resistance.

  • PDF

Development of Continuous SiC Fiber Reinforced Magnesium Composites Using Liquid Pressing Process (액상가압성형 공정을 이용한 SiC 연속섬유 강화 마그네슘 복합재료 개발)

  • Cho, Seungchan;Lee, Donghyun;Lee, Young-Hwan;Shin, Sangmin;Ko, Sungmin;Kim, Junghwan;Kim, Yangdo;Lee, Sang-Kwan;Lee, Sang-Bok
    • Composites Research
    • /
    • v.33 no.5
    • /
    • pp.247-250
    • /
    • 2020
  • In this study, the possibility of manufacturing a magnesium (Mg) composites reinforced with continuous silicon carbide (SiC) fibers was examined using a liquid pressing process. We fabricated uniformly dispersed SiC fiberAZ91 composites using a liquid phase pressing process. Furthermore, the precipitates were controlled through heat treatment. As a continuous Mg2Si phase was formed at the interface between the SiC fiber and the AZ91 matrix alloy, the interfacial bonding strength was improved. The tensile strength at room temperature of the prepared composite was 479 MPa, showing excellent mechanical properties.

Effects of a compaction method for powder compacts on the critical current density of MgB2 bulk superconductors

  • Kang, M.O.;Joo, J.;Jun, B.H.;Choo, K.N.;Kim, C.J.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.21 no.2
    • /
    • pp.40-44
    • /
    • 2019
  • In this study, the effects of the compaction method for (Mg+2B) powders on the apparent density and superconducting properties of $MgB_2$ bulk superconductor were investigated. The raw powders used in this study were nano-sized boron (B) and spherical magnesium (Mg). A batch of a powder mixture of (Mg+2B) was put in a steel mold and uniaxially pressed at 1 ton or 3 tons into pellets. Another batch of the powder mixture was uniaxially pressed at 1 ton and then pressed isostatically at $1800kg/cm^2$ in the water chamber. All pellets were heat-treated at $650^{\circ}C$ for 1 h in flowing argon gas for the formation of $MgB_2$. The apparent density of powder compacts pressed at 3 ton was higher than that at 1 ton. The cold isostatic pressing (CIP) in a water chamber allowed further increase of the apparent density of powder compacts, which influenced the pellet density of the final products ($MgB_2$). The compaction methods (uniaxial pressing and CIP) did not affect the formation of $MgB_2$ and superconducting critical temperature ($T_c$) of $MgB_2$, but affected the critical current density ($J_c$) of $MgB_2$ significantly. The sample with the high apparent density showed high $J_c$ at 5 K and 20 K at applied magnetic fields (0-5 T).

Synthesis and Characterization of Middle Infrared Transmission ZnS Ceramics by Heat Treatment Time (열처리 시간에 따른 중적외선 투과 ZnS 세라믹의 합성과 특성)

  • Kwon, Tae-Hyeong;Yeo, Seo-Yeong;Park, Chang-Sun;Kim, Chang-Il;Hong, Youn-Woo;Paik, Jong-Hoo
    • Journal of Sensor Science and Technology
    • /
    • v.26 no.5
    • /
    • pp.360-365
    • /
    • 2017
  • In this study, a heat treatment process was applied to ZnS nano-powder to improve the optical properties of ZnS ceramic, and the characteristics of heat treatment time were studied. The ZnS nano-powders were synthesized by hydrothermal synthesis. The heat treatment was carried out at $550^{\circ}C$ for 0.5, 1, 2, and 4 hours in a vacuum atmosphere ($10^{-2}torr$). X-ray diffraction and scanning electron microscope analyzes confirmed the change of crystal phase and grain size to confirm the structural change with heat treatment time. The heat treated ZnS nano-powder was sintered by hot pressing, and the change of optical properties of the ZnS ceramic was analyzed by infrared spectroscopy.

A Study of Diffusion Bonding Process for High Temperature and High Pressure Micro Channel Heat Exchanger Using Inconel 617 (인코넬 617을 이용한 고온고압용 미세채널 열교환기의 확산접합 공정에 관한 연구)

  • Song, Chan Ho;Yoon, Seok Ho;Choi, Joon Seok
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.27 no.2
    • /
    • pp.87-93
    • /
    • 2015
  • Recently, the heat exchangers are requiring higher performance and reliability since they are being used under the operating condition of high temperature and pressure. To satisfy these requirements, we need special materials and bonding technology. This study presents a manufacturing technology for high temperature and high pressure micro channel heat exchanger using Inconel 617. The bonding performance for diffusion bonded heat exchanger was examined and analyzed. The analysis were conducted by measuring thermal and mechanical properties such as thermal diffusivity and tensile strength, and parametric studies about bonding temperature and pressing force were also carried out. The results provided insight for bonding evaluation and the bonding condition of $1200^{\circ}C$, and 50 tons was found to be suitable for this heat exchanger. From the results, we were able to establish the base technology for the manufacturing of Inconel 617 heat exchanger through the application of the diffusion bonding.

Water Vapour Permeable/Water Resistant and Heat Resistant Finishing of Footwear Fabric (신발용 직물의 투습방수 및 내열성 가공)

  • Lee, Jae Ho;Choi, Hae Wook
    • Journal of Adhesion and Interface
    • /
    • v.7 no.3
    • /
    • pp.16-25
    • /
    • 2006
  • Water vapour permeable and water resistant film was laminated to made footwear woven fabric and non-woven fabrics by screen type with thermosetting reactive hot melt adhesive. Optimum conditions of each process were investigated, and the properties of film laminated fabric with optimum conditions are evaluated. The results are as follows. Thermosetting reactive polyurethane hot melt is retain proper heat resistance differently thermoplastic hot melt. Optimum melting adhesive process conditions are as follows ; drum temperature $95^{\circ}C$, hose temperature $97^{\circ}C$, feeding pipe temperature $100^{\circ}C$, screen temperature $105^{\circ}C$, pressure of opposite roller $1kgf/cm^2$, pressure of laminating roller $3kgf/cm^2$, finishing speed 15 m/min, melting temperature $120^{\circ}C$, cooling time 20 s, pressing temperature $130^{\circ}C$, pressing time 30 s. As the thickness of film was increased, the water vapour permeability was decreased but water resistance was increased, and the effect of film is dominant over all the others in the air permeability.

  • PDF

High Heat Flux Test of Cu/SS Mock-up for ITER First Wall (ITER 일차벽의 Cu/SS Mock-up에 대한 고열부하 시험)

  • Lee, D.W.;Bae, Y.D.;Hong, B.G.;Lee, J.H.;Park, J.Y.;Jeong, Y.H.
    • Journal of the Korean Vacuum Society
    • /
    • v.15 no.3
    • /
    • pp.325-330
    • /
    • 2006
  • In order to verify the integrity of the first wall (FW) of the International Thermonuclear Experimental Reactor (ITER), the fabricated Cu/SS mock-up is tested in the JAEA Electron Beam Irradiation Test Stand (JEBIS). To fabricate the Cu/SS mock-up, CuCrZr and 316L authentic stainless steel (SS316L) are used for Cu alloy and steel, respectively The hot isostatic pressing (HIP) is used as a manufacturing method with a $1050^{\circ}C$ and 150 MPa. The high heat flux (HHF) test is performed using an electron beam with a heat flux of $5MW/m^2$ and a cycle of 15-sec on time and 30-sec off time. The temperature measurement in the HHF test shows good agreement with the results obtained from ANSYS code analysis, which is used for determining the HHF test conditions.

Effect of Post-Process on Physical Properties of Electrospun PEI/PVdF Blend Nonwoven Web (전기방사법으로 제조한 PEI/PVdF 블렌드 웹의 물리적 특성에 대한 후처리 영향)

  • Seok, Hoon;Park, Cheol-Min;Kim, Dong-Young;Jo, Seong-Mu
    • Polymer(Korea)
    • /
    • v.36 no.5
    • /
    • pp.606-611
    • /
    • 2012
  • Polyetherimide (PEI) and poly(vinylidene fluoride) (PVdF) blend web was prepared by electrospinning technique. In order to improve low mechanical properties, post processes like hot-pressing and heat-stretching were employed, and a study on the effects of post processes on their mechanical properties was performed. To confirm the physical properties of the web, scanning electron microscopy and tensile measuring instrument were used. The mechanical strength of webs pressed in the ratios of 1/2, 1/3, 1/4 and 1/5 at $180^{\circ}C$ were improved four-to-five times compared to pristine webs. Also they showed an additional increase by 2~8MPa, by heat-stretching 30 to 40% at $220^{\circ}C$.

Mechanical Properties and Microstructure of Dental Heat-Pressable Glass-Ceramics (치과용 열가압 글라스 세라믹스의 기계적 성질과 미세구조)

  • 이해형;이병택
    • Journal of the Korean Ceramic Society
    • /
    • v.41 no.2
    • /
    • pp.143-150
    • /
    • 2004
  • Biaxial flexure strength (ball-on-3-ball) and fracture toughness (indentation microfracture) of heat-pressable glass-ceramics for dental use were investigated in this study. Crystal phase and microstructure of glass-ceramics were analyzed by XRD. SEM, and TEM. Crack propagation in specimens was not effectively arrested by dispersed crystalline particles. However, higher degree of crystallization probably contributes to strengthening of glass-ceramics. Better clinical reliability can be expected from lithium disilicate glass-ceramic because of its significantly higher biaxial flexure strength and fracture toughness.

Bulk Processing of an Amorphous $AI_{85}Ni_{10}Y_{5}$ Alloy Ribbon and Mechanical Properties by Annealing Treatment (비정질 $AI_{85}Ni_{10}Y_{5}$ 합금 리본의 벌크화와 어닐링에 따른 기계적 특성)

  • 고병철;김종현;유연철
    • Transactions of Materials Processing
    • /
    • v.8 no.6
    • /
    • pp.626-633
    • /
    • 1999
  • $Al_{85}Ni_{10}Y_5$ (at. %) amorphous alloy ribbons have been produced by rapidly solidification process and consolidated by the conventional powder metallurgy method. The grains with ∼90 nm were obtained in the Al85Ni10Y5 alloy extrudates by hot-pressing followed by hot-extusion. To investigate the effect of heat treatment on microstructural change of the extrudates, heat treatment was carried out from 200℃ to 400℃ at the step of 50℃. In addition, mechanical properties of the extrudates were analysed from torsion test at the temperature range or 400∼500℃ under a strain rates of 0.2, 0.5, and 1.0/sec. The extrudates showed a flow stress of ∼190 MPa and low elongation of ∼150% at 400℃, contributing to the enhancement of ductility and hardness for extrudates. Also, grain boundary sliding was occurred in the $Al_{85}Ni_{10}Y_5$ alloy during hot deformation.

  • PDF