• Title/Summary/Keyword: Heat-flow

Search Result 5,845, Processing Time 0.039 seconds

A study of the Mori Radicis Cortex pre-treatment on transient ischemic brain injury in mice (상백피(桑白皮) 메탄올 추출물 전처치가 일과성 허혈에 의한 생쥐의 뇌 손상에 미치는 영향)

  • Chung, Byung-Woo;Lim, Jae-Yu;Lee, Se-Eun;Lee, Byoungho;Lim, Sehyun;Lim, Chiyeon;Cho, Suin
    • The Korea Journal of Herbology
    • /
    • v.32 no.1
    • /
    • pp.25-31
    • /
    • 2017
  • Objectives : Mori Radicis Cortex (MRC), the root epidermis of Morus alba L., has been traditionally used to treat lung-related diseases in Korean Medicine. The common of MRC is Mulberry bark Morus bark, and it's pharmaceutical properties and taste are known as sweet and cold, and it promotes urination and reduce edema by reducing heat from the lungs and soothe asthma. In the present study, anti-apoptotic mechanism of MRC in middle cerebral artery occlusion (MCAO) model in mice. Methods : Two-hundred grams of MRC was extracted with methanol at room temperature for 5 days, and this was repeated one time. After filtration, the methanol was removed using vacuum evaporator, then stored at $-20^{\circ}C$ until use. C57BL/6 male mice were housed in an environment with controlled humidity, temperature, and light cycle. In order to determine beneficial effects of MRC on ischemia induced brain damage, infarct volume, neurological deficit scores, activities of several apoptosis-related proteins such as caspase-8, -9, Bcl-xL in MCAO-induced brains of mice were analyzed. Mice in MRC-treated groups were orally administered 30, 100, or 300 mg/kg of body weight for three consecutive days before commencing the MCAO procedure. Results : Pre-treatment of MRC significantly reduced infarct volume in MCAO subjected mice applied with 300 mg/kg of MRC methanol extract, and MRC effectively inhibited Bcl-xL reduction and caspase-9 activation caused by MCAO-induced brain damage. Conclusions : MRC showed neuro-protective effects by regulating apoptosis-related protein signals, and it can be a potential candidate for the therapy of ischemia-induced brain damage.

TREATMENT OF COMPOSITE RESIN RESTORATION WITH THE AIR ABRASIVE TECHNIQUE (Air abrasive technique을 이용한 복합레진 수복 증례)

  • Lee, Chang-Woo;Jang, Ki-Taeg;Lee, Sang-Hoon;Hahn, Se-Hyun
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.24 no.4
    • /
    • pp.763-770
    • /
    • 1997
  • The air abrasive technique is a non-mechanical method by which teeth are treated before restoration and stains and calculi are removed from tooth surfaces using the kinetic energy of small particles. The air abrasive technique in dentistry was first introduced in the 1950's with as instrument called 'Airdent'. But, as the main restorative materials of the period were amalgam and gold, and the instrument's inability to control the flow of particles caused the particles to be spread throughout the clinics, widespread use was not possible. In the 1990's, as these techincal problems were solved and more interest in new restorative materials rose in an effort to preserve sound tooth structure, new developements took place in instruments related to the air abrasive technique. The air abrasive technique produces less pressure, vibration and heat that might cause patient discomfort and facilitates the preservation of sound tooth structure. It also reduces the need for anesthesia and is less harmful to the pulp. Other advantages include increase in dentin bonding strength of composite resin, lower possibility of saliva contamination and maintenance of a dry field. But there is not direct contact between the nozzle and the tooth, the operator cannot use his or her tactile sense and must rely solely upon visual input. Other disadvantages are: the tooth preparation depends on the operator's ability; alpha-alumina particles, after bouncing off the tooth surface, cause damage to dental mirrors; the equipment is expensive and takes up a certain amount of space in the clinic. The author conducted case report using the air abrasive technique on patient visiting the Department of Pediatric Dentistry at Seoul National University Dental Hospital and arrived at the following conclusions. 1. The tooth preparation capability of different air abrasive devices varied widely among manufacturers. 2. It was more effective in treating early caries lesions and stains compared to lesions where caries had already progressed to produce soft dentin. 3. The cold stream and noise caused by the evacuation system was a major cause of discomfort to pediatric patients. 4. As there is no direct contact with tooth surface when using the air abrasive technique for tooth preparation, considerable experience and skill is required for proper tooth preparation.

  • PDF

Comparison of Phytoncide (monoterpene) Concentration by Type of Recreational Forest (산림휴양지 유형에 따른 피톤치드(모노테르펜) 농도 비교)

  • Lee, Yong-Ki;Woo, Jung-Sik;Choi, Si-Rim;Shin, Eun-Sang
    • Journal of Environmental Health Sciences
    • /
    • v.41 no.4
    • /
    • pp.241-248
    • /
    • 2015
  • Objectives: This study was conducted to provide scientific and effective information on phytoncides, which are associated with forest healing, and to activate recreational forests. Methods: The target sites were natural recreation forests, a forest park and an arboretum, and the control sites were three urban parks. The samples were collected at a volume of 6.0 L and a flow rate of 0.1 L/min for one hour using a low volume pump and the solid adsorbent sampling method. The phytoncide compounds adsorbed in the Tenax TA tube were analyzed by a automatic heat desorption unit and GC-MS. Results: By type of recreational forest, the annual concentrations of phytoncide (monoterpene) for the forest park showed the highest concentration with $1.450{\mu}g/m^3$, while those for the arboretum showed the lowest concentration at $0.892{\mu}g/m^3$, and thus the concentration of the forest park was approximately 1.6 times higher than the arboretum. The season showing the highest concentration of phytoncides was summer (June) and the forest park was the highest among the recreational forests. The concentrations of major components for phytoncide showed in descending order: ${\alpha}-pinene$, ${\beta}-pinene$, camphene, 3-carene and limonene. The seasonal concentration of ${\alpha}-pinene$, camphene and ${\beta}-pinene$ by type of recreational forest increased in April, which is characterized by low temperature and humidity, and the seasonal concentration of camphene decreased with higher humidity. The meteorological factors which had the high correlation with the concentration of total terpene were temperature and humidity. $CO_2$ and $O_2$ showed an inverse correlation. Conclusion: The major components of phytoncide were ${\alpha}-pinene$, ${\beta}-pinene$, camphene, 3-carene and limonene in descending order of concentration. Further and systematic study on the chemical nature of individual phytoncides, and on the effect of phytoncides on humans needs to be performed.

A Study on the Experimental Measurements and Its Recovery for the Rate of Boil-Off Gas from the Storage Tank of the CO2 Transport Ship (CO2 수송선 저장탱크의 BOG 측정 실험 및 회수에 관한 연구)

  • Park, Jin-Woo;Kim, Dong-Sun;Ko, Min-Su;Cho, Jung-Ho
    • Clean Technology
    • /
    • v.20 no.1
    • /
    • pp.1-6
    • /
    • 2014
  • $CO_2$ is generated by the combustion reaction, when getting the energy from fossil fuel. If the carbon dioxide emissions increases more, the global warming problem will become more serious. CCS (carbon capture storage) needs to be developed for the prevention of this. When liquefied $CO_2$ is transported, BOG (boil-off gas) is generated because of several problems. In the study, by injecting liquefied $CO_2$ in two tanks which contains $40m^3$each, the amount of BOG and its composition were measured during 30 days when generating pressure changes and external heat, loading, unloading. In result, 16,040 kg of BOG was generated and the composition has been found out to be 99.95% $CO_2$ and 0.05 % $N_2$. Also, we conducted simulation process for reliquefaction of generated BOG with vapor compression cycle using the PRO/II with PROVISION version 9.2. As a result, the refrigeration cycle of the total circulation flow rate was 42.07 kg/h and the condenser utility consumption was 48.85 kg/h.

Study on Formation Mechanism of Iron Oxide Nanoparticles (산화철 나노입자의 형성 메커니즘에 대한 연구)

  • Kim, Dong-Young;Yoon, Seok-Soo;Takahashi, Migaku
    • Journal of the Korean Magnetics Society
    • /
    • v.22 no.5
    • /
    • pp.167-172
    • /
    • 2012
  • In order to analyze the formation mechanism of iron oxide nanoparticles, we measured the heat flow of $Fe(OL)_3$ precursor with temperature, and TEM images and AC susceptibility of aliquots samples sequentially taken from the reaction solution, respectively. The thermal decomposition of two OL-chain from $Fe(OL)_3$ produced the Fe-OL monomer, which were contributed to the formation of iron oxide nanoparticles. In the initial stage of nanoparticles formation, the small iron oxide nanoparticles had ${\gamma}-Fe_2O_3$ structure. However, as the iron oxide nanoparticles were rapidly growth, the iron oxide nanoparticles showed ${\gamma}-Fe_2O_3$-FeO core-shell structure which the FeO layer was formed on the surface of ${\gamma}-Fe_2O_3$ nanoparticles by insufficient oxygen supply from the reaction solution. These nanoparticles were transformed to $Fe_3O_4$ structure by oxidation during long aging time at high temperature. Finally, the $Fe_3O_4$ nanoparticles with high saturation magnetization and stable in the air could be easily synthesized by the thermal decomposition method.

Effect of TESPT Silane Coupling Agent on Mechanical Properties of Precipitated Silica Filled NBR Compound for Oil Seal (TESPT 실란커플링제가 침전 실리카로 보강된 오일씰용 NBR복합소재의 기계적 물성에 미치는 영향)

  • Lee, Young-Seok;Hwang, Ki-Seob;Lee, Jong-Cheol;Kim, Tae-Geun;Ha, Ki-Ryong
    • Elastomers and Composites
    • /
    • v.46 no.1
    • /
    • pp.45-53
    • /
    • 2011
  • The effect of the silane coupling agent, bis(triethoxysilypropyl)tetrasulfide (TESPT), on mechanical properties of a silica-filled NBR compound for oilseal was investigated. Curing behavior and crosslinking density of the compounds were measured using ODR (oscillating disk rheometer) and swelling ratio in toluene. UTM (universal testing machine) and shore A hardness tester were used in order to study the characteristics of mechanical properties of original vulcanizates and aged ones with heated air and ASTM No. 3. oil. Recovery of elasticity which influences the performance and service life of oilseal was investigated by giving bending deformation to vulcanizates in aging condition. After bending aging test, recovery distance was measured and calculated angle of recovery from it. TR (temperature retraction) test was performed on these vulcanizates to determine the low temperature recovery behavior. Wear resistance was measured by Taber type abrasion tester. In addition, SEM was used to characterize the morphology of the worn surface of vulcanizates. The result showed that addition of TESPT into silica-filled compound improves not only compound flow-ability, interaction between NBR and silica and crosslinking density, but also hardness, 100% modulus, recovery of elasticity, wear resistance, heat resistance and ASTM No.3 oil resistance of vulcanizates.

Characterizations of Adhesion Property, Morphology and Cure Reaction of Epoxy/Polyamide/MPD Reactive Blend with Imidazole(2E4MZ-CN) Catalyst (이미다폴(2E4MZ-CN) 촉매 첨가에 의한 에폭시/폴리아미드/MPD 반응성 블렌드의 경화 반응, 형태학적 특징 및 접착력 향상 연구)

  • Song, Hyun-Woo;Kang, Hak-Su;Kim, Won-Ho;Marzi, Stephan;Kim, Byung-Min;Choe, Young-Son
    • Polymer(Korea)
    • /
    • v.33 no.4
    • /
    • pp.290-296
    • /
    • 2009
  • The morphology and mechanical properties of epoxy/polyamide/MPD/2E4MZ-CN reactive blends with various amount of catalyst were investigated. The cure behaviors, mechanical strengths, and morphological changes of the epoxy blend systems were analyzed by using DSC, UTM, and SEM, respectively. The amount of catalyst ranged from 0 to 3 phr, and the cure reaction occurred at $170^{\circ}C$ for 30 min. The maximum peaks in heat flow during cure reactions appeared at slightly lower temperature with increasing catalyst content, indicating that the cure reactions start at lower temperature by adding catalyst and polyamide rarely hinders the cure reaction paths. The co-continuous morphology was found in epoxy/polyamide(20 phr) blends and by adding catalyst to the blends much clearer and uniform co-continuous phase was observed. The surface tension of the mechanical test specimen was increased due to the AP plasma surface treatment, and then adhesion strength was increased by over 20% by adding 2 phr of catalyst to the blends. When considering morphological tuning of the blends by means of catalyst incorporation, it is expected that the increased elongation and adhesion strength can be achieved in the structural adhesive systems.

Comparative Experiments to Assess the Effects of Accumulator Nitrogen Injection on Passive Core Cooling During Small Break LOCA

  • Li, Yuquan;Hao, Botao;Zhong, Jia;Wang, Nan
    • Nuclear Engineering and Technology
    • /
    • v.49 no.1
    • /
    • pp.54-70
    • /
    • 2017
  • The accumulator is a passive safety injection device for emergency core cooling systems. As an important safety feature for providing a high-speed injection flow to the core by compressed nitrogen gas pressure during a loss-of-coolant accident (LOCA), the accumulator injects its precharged nitrogen into the system after its coolant has been emptied. Attention has been drawn to the possible negative effects caused by such a nitrogen injection in passive safety nuclear power plants. Although some experimental work on the nitrogen injection has been done, there have been no comparative tests in which the effects on the system responses and the core safety have been clearly assessed. In this study, a new thermal hydraulic integral test facility-the advanced core-cooling mechanism experiment (ACME)-was designed and constructed to support the CAP1400 safety review. The ACME test facility was used to study the nitrogen injection effects on the system responses to the small break loss-of-coolant accident LOCA (SBLOCA) transient. Two comparison test groups-a 2-inch cold leg break and a double-ended direct-vessel-injection (DEDVI) line break-were conducted. Each group consists of a nitrogen injection test and a nitrogen isolation comparison test with the same break conditions. To assess the nitrogen injection effects, the experimental data that are representative of the system responses and the core safety were compared and analyzed. The results of the comparison show that the effects of nitrogen injection on system responses and core safety are significantly different between the 2-inch and DEDVI breaks. The mechanisms of the different effects on the transient were also investigated. The amount of nitrogen injected, along with its heat absorption, was likewise evaluated in order to assess its effect on the system depressurization process. The results of the comparison and analyses in this study are important for recognizing and understanding the potential negative effects on the passive core cooling performance caused by nitrogen injection during the SBLOCA transient.

Curing Properties of UV-LED Curable Color Coating (UV-LED 경화형 칼라 코팅의 경화특성 연구)

  • Ho, Shin-Chan;Kim, Jong-Gu;Hong, Jin-Who;Ahn, Tae-Jung;Kim, Hyun-Kyoung
    • Journal of Adhesion and Interface
    • /
    • v.13 no.1
    • /
    • pp.31-37
    • /
    • 2012
  • In this study, we investigated the curing properties of UV-LED curable color coating. Specially, the effects of UV-LED wavelength (365, 395, and 405 nm), inert gas, the concentration of photosensitizer, and dual curing on the curing behavior of UV-LED coating systems were studied. The photopolymerization behaviors and the unreacted acrylate groups at Film-air (FA) interface and Film-substrate (FS) interface were investigated by photo differential scanning calorimetry (Photo-DSC) and Fourier-transform infrared spectroscopy with attenuated total reflection (FT-IR/ATR), respectively. Photo-DSC results showed that the heat flow and the ultimate conversion for coating system cured by 405 nm UV-LED were higher than the corresponding values for coating systems cured by 395 and 365 nm UV-LED. FT-IR/ATR results showed that the UV-LED curing systems improved interior and through curing of the coating film, but significantly are affected by oxygen inhibition at FA-interface. The inert environment such as nitrogen purging and the dual curing improved the surface and interior curing of the coating films.

A study on the reliability enhancement of Ultrasonic water treatment system to boiler (보일러 초음파 수처리장치의 신뢰성향상에 관한 연구)

  • Kim, Dae-Ryong;Lee, Keun-Oh
    • Journal of Energy Engineering
    • /
    • v.22 no.3
    • /
    • pp.287-293
    • /
    • 2013
  • This study was carried out to diminish the formation of scale in boilers which is one of the defect elements when they are operating. The defect relating to scale can cause a fatal impact on the explosion of boilers due to the overheating of their tubes, or it can affect the flow of water inside boilers with its bad circulation and result in a disparity of water inside the equipment. Heat transfer in the scale is low comparing to the boiler material, so it can lead to energy losses and has also impact on the global warming. In 2005, the Korean government introduced a system which requires boiler users to install the equipment which can prevent or eliminate the formation of scale to improve the management of water quality in boilers. The study on the techniques for preventing or eliminating the formation of scale started in 1821 and since then subsequently there have been lots of similar studies. The first one was about the scale reduction using potato starch. Since an ultrasonic scale preventer developed by a scientist from a Russian acoustic institute was introduced in1993, a variety of equipment of this kind have been disseminated in Korea. There has been a need to demonstrate the condition for the best performances of such equipment. Boilers are mostly composed of the main body and 288 the tube with a circular curved surface. I carried out a demonstration study on a circular tube which affects the scale defect the most among the boiler components. As a result of it, I found out the fact that the ultrasonic wave needs to reach a certain level of sound pressure and frequency to affect the formation of scale.