• Title/Summary/Keyword: Heat-exchanger

Search Result 2,456, Processing Time 0.027 seconds

The Effects of Coolant Inventory and Noncondensible Gas on the Natural Circulation in a PWR Loop System (PWR루프계통에서 냉각재 재고량 및 비응축성 가스의 자연순환에 미치는 영향)

  • Cha, Jong-Hee;Jin, Yong-Suk
    • Nuclear Engineering and Technology
    • /
    • v.21 no.4
    • /
    • pp.308-320
    • /
    • 1989
  • The objective of this work is to investigate the effects of diminished primary coolant inventory and the presence of noncondensible gas during single- and two-phase natural circulation in a PWR loop model. The test model was composed of two loops with a U-tube heat exchanger in each loop. Through a series of tests, it has been confirmed that the two-phase natural circulation flow rates were greatly dependent on primary coolant inventory as previous investigators observed. The primary coolant inventory limit to maintain two-phase natural circulation was found to be the amount of the coolant necessary to keep the waterline of the coolant nozzle hole center in this model. The presence of noncondensible gas impede the single-phase natural circulation, but it did not affect the two-phase natural circulation significantly.

  • PDF

Clinical Application of OXYREX Hollow Fiber Membrane Oxygenator (국산 막형 산화기 (OXYREX)의 체외순환 임상 성적 - 개심수술 40례 적용 -)

  • 김형묵
    • Journal of Chest Surgery
    • /
    • v.23 no.6
    • /
    • pp.1049-1056
    • /
    • 1990
  • The OXYREX hollow fiber membrane oxygenator developed by joint work of KIST and Green Cross Medical company has been evaluated by experimental investigation and clinical application, In this oxygenator gas exchanges occur through small pores of 0.1pm size which are distributed on 70% of surface of polypropylene hollow fiber. The Oxyrex membrane oxygenator consists of 36 thousand hollow fibers and it has 3.3m2 of gas exchange surface. The Oxyrex membrane oxygenator has unique blood flow path: blood enters the oxygenator passes between the hollow fibers and exits through outlet ports, that provides low transmembrane pressure drop. In the animal experiment and in vitro investigations of Oxyrex oxygenator, it showed low transmembrane pressure difference, effective heat exchanger performance, stable gas transfer function and less blood trauma. The Oxyrex oxygenator been used from March, 1990, to October, 1990, in 40 patients undergoing open heart operations. In the clinical applications of Oxyrex, adequate oxygenation[PaO2, 283$\pm$70mmHg] and carbon dioxide removal[PaCO2, 27\ulcorner6mmHg]were maintained under the condition of FiO2: below 0.6, Hct; 25%, perfusion flow; 2.4 L/min, gas flow: 2.1 L/min. During maximum 365 minutes of cardiopulmonary bypass[CPB] time period, the Oxyrex oxygenator maintained stable condition of PaO2, PaCO2 respectively and it also kept low plasma hemoglobin level. The complement proteins C3 and CH50 were not significantly changed pre to post CPB. There were no complications related to the oxygenator during and after the CPB.

  • PDF

Development of Radial Turbine for Air Cycle Refriger (공기 사이클 냉동기에 적응되는 반경 터빈의 개발)

  • Kwon, Gi-Hun;Lee, Ki-Ho;Kim, Jong-Seon
    • 유체기계공업학회:학술대회논문집
    • /
    • 2001.11a
    • /
    • pp.281-286
    • /
    • 2001
  • The radial turbine has been successfully applied to the systems which request relatively small output compared with the axial turbine, and has low manufacturing cost due to it's small size and simple structure. Recently, the researches on the development and the efficiency maximization of the radial turbine are in progress corresponding with the trend toward miniaturization in turbo machinery and the development of small dispersed power generation systems. The radial turbine is to be applied to our turbo refrigerator of which engine speed is 26,000 rpm and turbine efficiency is $88\%$. Also, as a heat exchanger is accepted instead of a combustor in our turbo refrigerator, the design of radial turbine has been performed to be appropriate to the circumstance of low temperature air, not high temperature combustor gas, into the turbine inlet . This radial turbine is being developed in consideration with not only the aero-dynamic performance but also the simplification of manufacturing and integration, and the durability at operating condition. This paper refer to the performance evaluation about the radial turbine design by comparison with consulting from Russia and the our evaluation about various design factors which are considered in aero-dynamic design process.

  • PDF

The Experimental Study of the Hybrid Cooling Tower using Cross and Counter Type Fills (직교.대향류 충진재를 이용한 하이브리드 냉각탑에 대한 실험적 연구)

  • Jun, C.H.;Lee, H.S.;Lee, H.C.;Moon, C.G.;Kim, J.D.;Kim, Eun-Pil;Yoon, J.I.
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.236-237
    • /
    • 2005
  • An experimental study on the Hybrid Cooling Tower has been done having a rated capacity of 3RT. Counter flow type fill, cross flow type fill and hybrid-type fill which is combined with two type fills as previously stated having a height of 0.3m have been used in the 0.8m${\times}$0.4m${\times}$1.9m dimensional tower respectively. The heat exchanger is consisting of 2 or 3 rows. The relevant temperatures and the velocities were selected based on the typical Korean weather for the year round operation of the tower. The cooling capacity of the tower is explained with respect to varying air inlet velocities, wet-bulb temperatures, and air to cooling water volume flow rate ratio (L/G ratio). The capacity of the hybrid-type fill was much superior to other fills, but hybrid-type fill shows higher pressure drop.

  • PDF

Experimental study for the pressure drop of R-22 and R-4O7C during the condensation in the micro-fin tubes (마이크로핀관내에서 R-22와 R-4O7C의 응축압력강하 특성에 관한 실험적 연구)

  • Roh, Geon-Sang
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.31 no.6
    • /
    • pp.715-722
    • /
    • 2007
  • Experiments were conducted for the investigation of pressure drop inside horizontal micro-fin tubes during the condensation of R-22 and ternary refrigerant. R-407C(HFC-32/125/134a 23/25/62 wt%) as a substitute of R-22. The condenser is a double-tube and counterflow type heat exchanger which is consisted with micro-fin tubes having 60 fins with a length of 4000mm, outer diameter of 9.53mm and fin height of 0.2mm. The mass velocity varied from 102.1 to $301.0kg/(m^2{\cdot}s)$ and inlet quality was fixed as 1.0. From the experimental results. the pressure drop for R-407C was considerably higher than that for R-22. The value of PF(penalty factor) for both of refrigerants was not bigger than the ratio of micro-fin tube area to smooth tube area. Based on the experimental data. correlation was Proposed for the prediction of frictional pressure drop during the condensation of R-22 and R-407C inside horizontal micro-fin tubes.

Instability and Self-Sustained Oscillation of the Flow between Three-Dimensionally Cross-corrugated Plates (3차원 교차 주름판 내 유동의 불안정성 및 자활 진동)

  • Lee Seung Youp;Choi Young Don
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.679-682
    • /
    • 2002
  • Energy dissipations in a general PHE flow are the compounded effects of the piled corrugate geometries and its wall pressure and temperature distributions. In addition, although the exchangers are substantial pieces of engineering equipment, they are composed of a very large number of nominally identical and small geometrical elements. In the present numerical study, the three-dimensionally complicated energy dissipation fields and those wall-shape-induced flow destabilization are investigated in the cross-corrugated passages, which result in high energy transports with comparatively low pressure drop. We revealed the critical conditions as $Re=157.3 for the wall-shape-induced flow destabilization in a general PHE element by initial value method, or shooting method, and compare its value to that of analytical solution of plane Poiseille flow, two-dimensional grooved flow and so on. We also observed the detailed variation of flow field and energy transportation with changes in time and flow variables such as Reynolds number. Lastly, we considered the flow natural frequency, or Strouhal number, with variation of hydrodynamic conditions for the best use of active control, such as forced mass flow rate pulsative flow, to enhance energy transportation.

  • PDF

Numerical Analysis of Flow Phenomena in Cylindrical Shell with Baffle according to the Position of Inlet and Outlet (출.입구 위치에 따른 배플을 갖는 원통내 유동특성에 대한 수치해석)

  • Shin, Y.H.;Sayeed, S.M.;Jean, Y.C.;Chung, H.S.;Jeong, H.M.
    • Journal of Power System Engineering
    • /
    • v.15 no.6
    • /
    • pp.22-26
    • /
    • 2011
  • A numerical simulation on the flow field was carried out on the cylindrical shell with baffles. The steady incompressible 3-D Navier-Stokes solution is obtained with the actual operational condition and geometry of the heat exchanger. The effect of the location of inlet and outlet on the cylindrical shell with baffle is investigated by varying flow rate. The angle between the location of In/Outlet and baffle cutting part is $0^{\circ}$, $30^{\circ}$, $60^{\circ}$, $90^{\circ}$, $120^{\circ}$, $150^{\circ}$ and $180^{\circ}$. The present results show that the pressure drop is dependent on Reynolds number in the inlet area and position of inlet and outlet; i.e., the pressure drop increases with increasing Reynolds number and the pressure drop decreases with increasing angle between baffle cutting part and position of inlet and outlet.

A Study of Dynamic Simulation of a Hybrid Absorption Chiller Utilizing Solar Power (태양열을 이용한 일이중 겸용 흡수식 냉온수기 동적성능 모사연구)

  • Shin, Young-Gy;Seo, Jung-A;Woo, Sung-Min;Kim, Hyo-Sang
    • Proceedings of the SAREK Conference
    • /
    • 2009.06a
    • /
    • pp.967-972
    • /
    • 2009
  • A dynamic model has been developed to investigate the operability of a single and double-effect solar energy assisted parallel type absorption chiller. In the study, main components and fluid transport mechanism were modeled. And solar radiation and the solar collector also were also modeled along with its control design. The model was run for the single mode with solar energy supply only and the solar/gas driving double effect mode. From the simulation results, it was found that the present configuration of the chiller is not capable of regulating solution flow rates according to variable solar energy input. And the issues of the excessive circulation flowrate and the mismatch between available solar power and cooling load discourages the use of the single mode, but the dual use of gas and solar power is recommendable in view of controllability and enhanced COP.

  • PDF

Performance Characteristics of OTEC(Ocean Thermal Energy Conversion) Power Cycle with Vapor-Liquid Ejector (증기-액 이젝터를 적용한 해양온도차발전 시스템의 성능 특성)

  • Yoon, Jung-In;Son, Chang-Hyo;Kim, Hyeon-Uk;Ha, Soo-Jung;Lee, Ho-Saeng;Kim, Hyun-Ju
    • Journal of Power System Engineering
    • /
    • v.18 no.5
    • /
    • pp.88-93
    • /
    • 2014
  • In this paper, the performance analysis of condensation and evaporation capacity, turbine work and efficiency of the OTEC power system using vapor-liquid Ejector is presented to offer the basic design data for the operating parameters of the system. The working fluid used in this system is $CO_2$. The operating parameters considered in this study include the vapor quality at heat exchanger outlet, pressure ratio of ejector and inlet pressure of low turbine, mass flow ratio of separator at condenser outlet. The main results were summarized as follows. The efficiency of the OTEC power cycle has an enormous effect on the mass flow ratio of separator at condenser outlet. With a thorough grasp of these effects, it is possible to design the OTEC power cycle proposed in this study.

Effects of the Internal Structure on the Distribution Performance of a Refrigerant Distributor (냉매분배기 분배성능에 미치는 내부 형상인자의 영향)

  • Kim, Dong-Hwi;Sa, Yong-Gheol;Chung, Baikyoung;Park, Byung-Duck
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.24 no.5
    • /
    • pp.444-450
    • /
    • 2013
  • The distribution performance of refrigerant distributors in air conditioner evaporators was examined numerically and experimentally. Internal flow analysis of the distributor by CFD found that the distance from the socket to the cone, the angle of the cone and the base area of the cone were the most important factors affecting refrigerant distribution ability and vortex creation. To enhance distribution performance, two distributors with improved internal structures were designed. To test these new structures, distribution performance was also analyzed by CFD and an empirical experiment was carried out using the water-nitrogen. Experimental results on the distribution fraction of each distributor hole showed a good agreement with the results of the CFD analysis. Thus, the new design of the distributors enhanced distribution performance of the refrigerant distributors.