• Title/Summary/Keyword: Heat-exchanger

Search Result 2,455, Processing Time 0.027 seconds

High Temperature Corrosion of Alloy 617 in Impure Helium and Air for Very High-Temperature Gas Reactor (초고온가스로용 Alloy 617의 불순물 함유 헬륨/공기 중에서 고온부식 특성)

  • Jung, Sujin;Lee, Gyeong-Geun;Kim, Dong-Jin;Kim, Dae-Jong
    • Corrosion Science and Technology
    • /
    • v.12 no.2
    • /
    • pp.102-112
    • /
    • 2013
  • A very high-temperature gas reactor (VHTR) is one of the next generation nuclear reactors owing to its safety, high energy efficiency, and proliferation-resistance. Heat is transferred from the primary helium loop to the secondary helium loop through an intermediate heat exchanger (IHX). Under VHTR environment Alloy 617 is being considered a candidate Ni-based superalloy for the IHX of a VHTR, owing to its good creep resistance, phase stability and corrosion resistance at high temperature. In this study, high-temperature corrosion tests were carried out at 850 - $950^{\circ}C$ in air and impure helium environments. Alloy 617 specimens showed a parabolic oxidation behavior for all temperatures and environments. The activation energy for oxidation was 154 kJ/mol in helium environment, and 261 kJ/mol in an air environment. The scanning electron microscope (SEM) and energy-dispersive x-ray spectroscopy (EDS) results revealed that there were a Cr-rich surface oxide layer, Al-rich internal oxides and depletion of grain boundary carbide after corrosion test. The thickness and depths of degraded layers also showed a parabolic relationship with the time. A corrosion rate of $950^{\circ}C$ in impure helium was higher than that in an air environment, caused by difference in the outer oxide morphology.

A Study on Estimating Real-time Thermal Load During GHP Operation in Heating Mode (GHP 난방 모드 운전시 실시간 부하 추정방법에 관한 연구)

  • Seo, Jeong-A;Shin, Young-Gy;Oh, Se-Je;Jeong, Sang-Duck;Ji, Kyoung-Chul;Jeong, Jin-Hee
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.23 no.1
    • /
    • pp.32-37
    • /
    • 2011
  • The present study has been conducted to propose an algorithm regarding real-time load estimation of a gas engine-driven heat pump. In the study, thermal load of an indoor unit is estimated in terms of air-side and refrigerant-side. The air-side estimation is based on a typical heat exchanger model and is found to be in good agreement with experimental data. When it comes to the refrigerant-side load, a pressure difference across a valve must be estimated. For the estimation, it is assumed to be proportional to a bigger pressure difference that is available either by measurement or by estimation. Relative good agreement between the air- and refrigerant-sides suggests that the assumption may be plausible for the load estimation. The summed flow rate of all of indoor units is in good agreement with the throughput of the compressor which are calculated from the manufacturer's software. Accordingly, estimated thermal loads are also in good agreement. The proposed algorithm may be further developed for improved control algorithm and fault diagnosis.

Experimental Study on Corrosion and Thermal Conductivity Characteristics of Thermal Spray Coating for Sea Water Heat Exchanger (해수용 열교환기 적용을 위한 열분사 코팅의 부식 및 열전도 특성에 관한 실험적 연구)

  • Cho, Meang-Ik;Huh, Cheol;Kwon, Young-Chul;Kwon, Jeong-Tae
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.12
    • /
    • pp.6098-6105
    • /
    • 2013
  • In the present study, the characteristics of corrosion and thermal conductivity of thermal spray coatings for seawater heat exchangers were examined experimentally. The coating types of theZn and Al thermal spray coatings with additional epoxy and silicone sealers were tested. To examine the corrosion characteristics of the thermal spray coating, the cyclic voltamogram curve was measured followed by SEM imaging for surface characterization. The laser flash method was usedto measure the thermal conductivity of the specimen. The conductivity test results showed that thermal conductivity decreased by3 ~ 4% with the silicone sealer and decreased by 70 ~ 75% with the epoxy sealer.

A Comparative Study of the Cold Power Generation Systems for LNG Terminal (LNG 인수기지용 냉열발전 시스템 비교 연구)

  • 김동수;박영무
    • Journal of Energy Engineering
    • /
    • v.5 no.1
    • /
    • pp.34-41
    • /
    • 1996
  • The heat of evaporation (cold energy) of LNG is the energy consumed in the production of LNG. This energy amounts to 14% of the NG. In Pyungtak LNG terminal, it is about 96 MW in 1993. In order to utilize the cold energy, the cold power generation systems are investigated: The Rankine cycle using the low temperature energy, the partial expansion cycle using the pressure energy, and the Linde process which is a combined cycle of the Rankine and the partial direct expansion cycle. The commercial simulator, ASPEN Plus, is used. The conceptual design data are obtained from the current facilities of the Pyungtak LNG terminal. The performances of three systems are evaluated. The amount of electric power ranges iron 3 MW to 6MW. The optimum energy efficiency is about 37%. The optimum design conditions are obtained for the partial direct expansion (PDE) cycle. The performance of the PDE cycle is supposed to be comparable to that of the Rankine cycle if the areas of the total heat exchanger of the both cycle are equal.

  • PDF

Numerical Analysis of Freezing Phenomena of Water around the Channel Tube of MF Evaporator (MF증발기 채널관 주위의 결빙현상에 대한 해석적 연구)

  • Park, Yong-Seok;Seong, Hong-Seok;Suh, Jeong-Se
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.1
    • /
    • pp.114-120
    • /
    • 2020
  • In this study, the process of freezing around two consecutively arranged channel tubes used for evaporator heat exchange was numerically investigated. Numerical results confirmed that the vortex occurred between the front channel and the rear channel and also that the vortex occurred due to the rapid change of the channel at the rear of the rear channel. These vortices were found to play a role in reducing the ice layer to some extent by the growth of the ice layer at the front and rear of the channel tube. The freezing layer showed a tendency to gradually increase as it passed through the channel pipe. As the wall temperature in the channel pipe decreased, the thickness of the freezing layer increased. As the flow rate of water slowed, the thickness of the freezing layer became thicker. In particular, in the case of a slow flow rate of 0.03 m/s, the freezing layers of the front channel pipe and the rear channel pipe were connected to each other. The narrower the channel, the thinner the freezing layer was in both the front and rear channel tubes. It is found that these thin freezing layers are caused by the low thickness of the temperature boundary layer formed around the channel tube.

Thermoacoustic Refrigerating System, Part II : Implementation and Experiment (열음향 냉장시스템 (II) : 제작 및 실험)

  • Hah, Zae-Gyoo;Ahn, Chul-Yong;Sung, Keong-Mo
    • The Journal of the Acoustical Society of Korea
    • /
    • v.14 no.6
    • /
    • pp.13-20
    • /
    • 1995
  • In this paper, the thermoacoustic refrigerating system was implemented and its operation was experimentally verified. The system is composed of several parts ,4 inch midrange speaker, speaker housing, chamber, stack housing, stack of plates, heat exchangers, thin pipe and cavity. The system is filled with He gas at 10 bar and contains T-type thermocouples and condenser microphone for measuring the temperature and pressure inside, respectively. In addition, cooling water is used for protecting speaker from thermal destruction and cooling down the hot heat exchanger. For the experimental verification of the implemented refigerating system, electrical impedance and resonance characteristics were measured. The results showed that it was most efficient to drive the system at 340 Hz. When operated at 340 Hz, $30^\circ{C}$ environments and 50 electical watts, the temperature of the cold region decreased by $16^\circ{C}$. The dissatisfaction mainly comes from the incomplete thermal insulation of the cold region. We also pointed out some guidelines to improve the performance for later study.

  • PDF

Preventing Freezing of Condensate inside Tubes of Air-Cooled Condenser (공랭식 응축기 관내 응축수 동결 방지에 관한 연구)

  • Joo, Jeong-A;Hwang, In-Hwan;Cho, Young-Il;Lee, Dong-Hwan
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.8
    • /
    • pp.811-819
    • /
    • 2012
  • An air-cooled condenser is a device that is used for converting steam into condensate by using ambient air. The air-cooled condenser is prone to suffer from a serious explosion when the condensate inside the tubes of a heat exchanger is frozen; in particular, tubes can break during winter. This is primarily due to the structural problem of the tube outlet of an existing conventional air-cooled condenser system, which causes the backflow of residual steam and noncondensable gases. To solve the backflow problem in such condensers, such a system was simulated and a new system was designed and evaluated in this study. The experimental results using the simulated condenser showed the occurrence of freezing because of the backflow inside the tube. On the other hand, no backflow and freezing occurred in the advanced new condenser, and efficient heat exchange occurred.

A Study of Efficacy of Physical Water Treatment Devices for Mineral Fouling Mitigation Using Artificial Hard Water (인공 경수를 이용한 미네랄 파울링 저감에 물리적 수처리 기기들의 효과에 관한 연구)

  • Pak, Bock Choon;Kim, Sun Do;Baek, Byung Joon;Lee, Dong Hwan
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.29 no.11 s.242
    • /
    • pp.1229-1238
    • /
    • 2005
  • The objective of the present study was to investigate the efficacy of physical water treatment (PWT) technologies using different catalytic materials and an electronic anti-fouling device in the mitigation of mineral fouling in a once-through flow system with mini-channel heat exchanger. Effects of flow velocity and water hardness on the effectiveness of PWT technologies were experimentally studied. The artificial water hardness varied from 5.0 to 10 mo1/m$^{3}$ as CaCO$_{3}$. For 10 mo1/m$^{3}$ solution, fouling resistance reduced by 13-40$\%$ depending on flow velocity and types of PWT devices. On the other hand, fouling resistance reduced by 21-29$\%$ depending on the PWT devices for 5 mo11m3 solutions. The PWT device using alloy of Cu and Zn as catalyst (CM2) was slightly more effective than the others. SEM photographs of scale produced from the 10 mol/m$^{3}$ solution at 1.0 m/s indicated that calcium carbonate scales without PWT devices were needle-shaped aragonite, which is sticky, dense and difficult to remove. Scales with the PWT devices showed a cluster of spherical or elliptic shape crystals. Both the heat transfer test results and SEM photographs strongly support the efficacy of PWT technologies using catalytic materials and an electronic anti-fouling device in the mitigation of mineral fouling.

One-dimensional Numerical Analysis of the Effect of Seawater Feed Rate on Multi-effect Solar Stills (태양열 담수기 다중효용부의 해수 공급유량에 관한 1차원 수치해석)

  • Lim, Byung-Ju;Yu, Sang-Seok;Park, Change-Dae;Chung, Kyung-Yul
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.40 no.7
    • /
    • pp.477-484
    • /
    • 2016
  • In a multi-effect solar distiller, a feeding rate of seawater to each effect should be decreased as the effect number is increased. In previous studies, the feed rate of seawater was not reduced evenly between the effects, which is unreasonable, since the thermal energy input of each effect decreases by the same amount. In this work, numerical analysis was carried out in order to elucidate this discrepancy. The results showed that the amount of distillates produced was almost the same for both evenly and unevenly reduced flow rates between the effects. Optimum feed rates of seawater with various energy inputs from exhaust gas heat exchanger were also obtained. The results showed that the optimum feed rate of the first effect increased linearly or reached a steady state depending on the heat flux.

Restrained Bending Effect by the Support Plate on the Steam Generator Tube with Circumferential Cracks (원주방향 균열 존재 증기발생기 전열관에 미치는 지지판의 굽힘제한 영향)

  • Kim, Hyun-Su;Jin, Tae-Eun;Kim, Hong-Deok;Chung, Han-Sub;Chang, Yoon-Suk;Kim, Young-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.2 s.257
    • /
    • pp.277-284
    • /
    • 2007
  • The steam generator in a nuclear power plant is a large heat exchanger that uses heat from a reactor to generate steam to drive the turbine generator. Rupture of a steam generator tube can result in release of fission products to environment outside. Therefore, an accurate integrity assessment of the steam generator tubes with cracks is of great importance for maintaining the safety of a nuclear power plant. The steam generator tubes are supported at regular intervals by support plates and rotations of the tubes are restrained. Although it has been reported that the limit load for a circumferential crack is significantly affected by boundary condition of the tube, existing limit load solutions do not consider the restraining effect of support plate correctly. In addition, there are no limit load solutions for circumferential cracks in U-bend region with the effect of the support plate. This paper provides detailed limit load solutions for circumferential cracks in top of tube sheet and the U-bend regions of the steam generator tube with the actual boundary conditions to simulate the restraining effect of the support plate. Such solutions are developed based on three dimensional finite element analyses. The resulting limit load solutions are given in a polynomial form, and thus can be simply used in practical integrity assessment of the steam generator tubes.