• 제목/요약/키워드: Heat transfer area

검색결과 599건 처리시간 0.022초

컨테이너하우스의 바닥과 벽면에 엑셀파이프 매설에 의한 벽면, 바닥, 공기, 온수의 온도분포 특성 (Characteristics of Temperature Distribution of Wall, Floor, Air and Hot Water by Burying the Excel Pipe on the Floor and Wall of a Container House)

  • 조동현
    • 한국기계가공학회지
    • /
    • 제21권2호
    • /
    • pp.94-100
    • /
    • 2022
  • A study was conducted to significantly increase the heat transfer area by simultaneously burying the excel pipe in the floor and wall of a container house, thereby greatly reducing the initial heating time. In addition, a small hot water boiler suitable for the heating load of a small container house with a maximum area of 6 m2 was studied. A wall-mounted hot water boiler was developed as a result of the study. When a hot water boiler is installed outdoors for heating, heat radiation energy is lost in winter from the hot water boiler and hot water pipe due to the low temperature. We propose an approach through which the energy loss was greatly reduced and the temperature of hot water increased in proportion to the operating time. Moreover, as the mass flow rate of the hot water flowing inside the excel pipe increased, the temperature of the hot water decreased. The temperature of the wall and floor surfaces of the container house increased in proportion to the increase in the mass flow rate of hot water flowing inside the excel tube. Natural convection heat transfer was realized from the wall and floor surfaces of the container house, and the heat transfer area was increased by a factor of 3 with respect to heat transfer area limited to the floor by the existing hot water panel. As a result, the initial temperature increase rate was much higher because of the larger heat transfer area.

출구유로 단면적이 수직 환상공간 내부의 풀비등에 미치는 영향 (Effects of Outflow Area on Pool Boiling in Vertical Annulus)

  • 강명기
    • 대한기계학회논문집B
    • /
    • 제37권4호
    • /
    • pp.377-385
    • /
    • 2013
  • 출구유로 단면적이 수직 환상공간 내부의 풀비등 열전달에 미치는 영향을 규명하기 위하여 세 가지 서로 다른 유동제한장치를 실험적으로 연구하였다. 가열 튜브는 매끈한 표면을 가지는 스테인리스강이며 대기압 상태 하에 있는 물을 사용하였다. 환상공간의 하부유로 조건은 개방과 폐쇄된 경우 두 가지를 모두 고려하였으며 유동제한장치를 설치한 환상공간에 대한 결과를 유동제한장치가 없는 환상공간에 대한 결과와 서로 비교하였다. 출구유로 단면적을 축소하는 것은 열전달의 감소를 초래하지만, 출구 유로가 아주 작은 경우 열전달계수가 증가하는 경우도 관찰되었다. 이러한 경향은 기포군집의 형성과 이동에 따른 액체교란의 차이로서 설명되며, 유동대류, 맥동류 발생, 기포 군집 하부의 미세층증발이 중요한 열전달 기구인 것으로 확인하였다.

Rib의 형상에 따른 heat spreader의 열전달 특성 (Heat Transfer Characteristics of PDP Heat Spreader with Various Rib Types)

  • 김재중;이창희;백승준;신승훈;장석원;유동수;노홍구
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집D
    • /
    • pp.402-407
    • /
    • 2001
  • This paper reports a result of numerical heat transfer analysis for heat spreader with various ribs. Four different ribs are compared in this study. In general, the heat transfer on a vertical plate is enhanced when a rib is attached as the surface area increases, and the growth of the boundary layer is interrupted. However, for a low flow less than 0.1m/s, it is observed that the heat transfer is sensitive to the height of a rib: it decreases as the height increases. Among the four ribs, the H-shaped rib showed better performance than other ribs.

  • PDF

$45^0$의 rib이 설치된 채널에서의 열전달과 유동특성의 실험 및 수치해석 (Experimental & Numerical Investigation for Heat Transfer and Flows in a $45^0$ Inclined Ribbed Square Channel)

  • 강호근;안수환;김명호
    • 한국마린엔지니어링학회:학술대회논문집
    • /
    • 한국마린엔지니어링학회 2005년도 후기학술대회논문집
    • /
    • pp.178-179
    • /
    • 2005
  • Numerical and experimental investigation of incompressible turbulent flow and heat transfer through square channels with varying number of ribbed walls were conducted to determined pressure drop and heat transfer. The CFX solver used for the computation. The rough walls have a $45^0$ inclined square rib. Uniform heat flux is maintained on whole inner heat transfer channel area. The numerical results agreed well with experimental data that obtained for 7600$D_h$) of 0.0667. The results show that values of local heat transfer coefficient and friction factor increase with an increasing number of ribbed walls.

  • PDF

마이크로핀 관의 기하학적 형상변화에 대한 열전달 특성 (I) - 응축 열전달 - (Heat transfer with geometric shape of micro-fin tubes (I) - Condensing heat transfer -)

  • 곽경민;장재식;배철호;정모
    • 설비공학논문집
    • /
    • 제11권6호
    • /
    • pp.774-788
    • /
    • 1999
  • To examine the enhancement mechanism of condensing heat transfer through microfin tube, the condensation experiments with refrigerant HCFC 22 are performed using 4 and 6 kinds of microfin tubes with outer diameter of 9.52mm and 7.0mm, respectively. Used microfin tubes have different shape and number of fins with each other The main heat transfer enhancement mechanism is known to be the enlargement of heat transfer area and turbulence promotion. Together with these main factors, we can find other enhancement factors by the experimental data, which are the overflow of the refrigerant over the microfin and microfin arrangement. The overflow of the refrigerant over the microfin can be analyzed by the geometric shape of the microfin. Microfin tubes having a shape which can give much overflow over the microfin show large condensing heat transfer coefficients. The effect of microfin arrangement is related to the heat transfer resistance of liquid film of refrigerant. The condensing heat transfer coefficients are high for the microfin tube with even distribution of liquid film.

  • PDF

MEMS 로 제작된 마이크로 채널에서의 3 차원 열전달 해석 (3D simulation of Heat transfer in MEMS-based microchannel)

  • 최치웅;허철;김동억;김무환
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회B
    • /
    • pp.1870-1875
    • /
    • 2007
  • The microchannel heat sink is promising heat dissipation method for high heat flux source. Contrary to conventional circular channel, MEMS based microchannel had rectangular or trapezoidal cross-sectional shape. In our study, we conducted three dimensional conjugate heat transfer calculation for rectangular shape microchannel. First, we simulated that channel was completely drained with known heating power. As a result we obtained calibration line, which indicates heat loss was function of temperature. Second, we simulated single phase heat transfer with various mass flux, 100-400 $kg/m^2s$. In conclusion, the single phase test verified that the present heat loss evaluation method is applicable to micro scale heat transfer devices. Heat fluxes from each side wall shows difference due to non-uniform heating. However those ratios were correlated with supplied total heat. Finally, we proposed effective area correction factor to evaluate appropriate heat flux.

  • PDF

CFC11, HCFC123, HCFC141b 풀내에서 낮은 핀관의 비등 열전달특성 (Pool Boiling Heat Transfer Charcteristics of Low-Fin Tubes in CFC11, HCFC123 and HCFC141b)

  • 김주형;곽태희;김종보
    • 대한기계학회논문집
    • /
    • 제19권9호
    • /
    • pp.2316-2327
    • /
    • 1995
  • Experimental results from nucleate pool boiling heat transfer with various finned tubes in CFC11, HCF123 and HCFC141b are reported. One plain tube and four low fin tubes of various fin densities were tested in an attempt to find out the optimum fin density in the heat flux range of 10-60 kW/m$^{[-992]}$ at near atmospheric pressure. The results indicated that CFC11 showed the highest heat transfer coefficients. Its alternatives, HCFC123 and HCFC141b, showed 3-5% lower heat transfer coefficients than those of CFC11 at the same heat flux. As the fin density increases, so does the heat transfer surface area. Measured heat transfer coefficients, however, do not necessarily always increase as the fin density increases. This unique phenomenon seems to be caused by the coalescence of the bubblers that prevent the cool liquid from entering into the fin valleys. For all the refrigerants tested, the optimum fin density yielding the highest performance was 28 fins per inch confirming the previous results by other researchers.

가정용 보일러의 급탕시설 개선방안에 관한 연구 (A Study on the Improvement of the Water System in Domestic Boiler)

  • 한규일;박종운
    • 수산해양기술연구
    • /
    • 제34권2호
    • /
    • pp.200-211
    • /
    • 1998
  • Heat transfer performance improvement by fin and groovs is studied for condensation of R-11 on integral-fin tubes. Eight tubes with trapczodially shaped integral-fins having fin density from 748 to 1654fpm(fin per meter) and 10, 30 grooves are tested. A plain tube having the same diameter as the finned tubes is also used for comparison. R-11 condensates at saturation state of 32 $^{\circ}C$ on the outside tube surface coded by inside water flow. All of test data are taken at steady state. The heat transfer loop is used for testing singe long tubes and cooling is pumped from a storage tank through filters and folwmeters to the horizontal test section where it is heated by steam condensing on the outside of the tubes. The pressure drop across the test section is measured by menas pressure gauge and manometer. The results obtained in this study is as follows : 1. Based on inside diameter and nominal inside area, overall heat transfer coefficients of finned tube are enhanced up to 1.6 ~ 3.7 times that of a plain tube at a constant Reynolds number. 2. Friction factors are up to 1.6 ~ 2.1 times those of plain tubes. 3. The constant pumping power ratio for the low integral-fin tubes increase directly with the effective area to the nominal area ratio, and with the effective area diameter ratio. 4. A tube having a fin density of 1299fpm and 30 grooves has the best heat transfer performance.

  • PDF

타원형휜-원형관 열교환기의 강제대류 열전달 특성 (CONVECTIVE HEAT TRANSFER CHARACTERISTICS OF OVAL FIN-CIRCULAR TUBE HEAT EXCHANGER)

  • 강희찬;이종휘
    • 한국전산유체공학회지
    • /
    • 제15권2호
    • /
    • pp.1-6
    • /
    • 2010
  • The purpose of the present study is to investigate the flow resistance and the heat transfer characteristics of oval fin-tube heat exchanger. Six kinds of oval fin having the same fin area and different diameter ratio tested numerically. Test data for the heat transfer, pressure drop and fin temperature were shown and discussed. The pressure drop and heat transfer increased for increasing the oval fin diameter ratio(diameter of span-wise direction to diameter of longitudinal diameter) up to 50% and 45% respectively.

타원형휜-원형관 열교환기의 강제대류 열전달 특성 (CONVECTIVE HEAT TRANSFER CHARACTERISTICS OF OVAL FIN-CIRCULAR TUBE HEAT EXCHANGER)

  • 강희찬;이종휘
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2009년 춘계학술대회논문집
    • /
    • pp.341-346
    • /
    • 2009
  • The purpose of the present study is to investigate the flow resistance and the heat transfer characteristics of oval fin-tube heat exchanger. Six kinds of oval fin having the same fin area and the different diameter ratio tested numerically. Test data for the heat transfer, pressure drop and fin temperature were shown and discussed. The pressure drop and heat transfer increased for increasing the oval fin diameter ratio(diameter of span-wise direction to diameter of longitudinal diameter) up to 50% and 45% respectively.

  • PDF