• Title/Summary/Keyword: Heat stability

Search Result 1,578, Processing Time 0.029 seconds

A Study on the Performance Evaluation Method of Waterproofing-Seal as Leakage Cracks Repairing Material using on the Underground Structure (지붕용 톱코팅재의 내구성 향상에 관한 성능 및 평가방법에 관한 기초적 연구)

  • Park, Jin-Sang;Kang, Hyo-Jin;Oh, Sang-Keun
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05b
    • /
    • pp.517-520
    • /
    • 2006
  • The waterproofing of Building on the roof has been exposed more underground or the other part of waterproofing than environmental factor(solar heat, UV, salt, acid rain, wind, temperature, snow, rain, etc.) or physical factor. So it must be have a waterproofing performance and it has a special technique for the maintaining of concrete durability. Therefore, exposed waterproof layer has to protected from UV, solar heat, rain and the outside environment also, to endurance durability methods spread face plate topcoat material on the waterproof layer. But, actuality faceplate waterproof layer of topcoat materials are unbearable to UV, solar heat and moisture etc. and it doesn't have adhesion with waterproof layer in the middle. So it happens to crack, separating and heaving etc. Therefore, in the study, we will suggest that using of the exposed roof waterproof layer topcoat materials test method manage rooftop waterproof layer for the durability and the stability.

  • PDF

Studies on the Manufacturing of Ginseng Soft Drink II. Effect of pH and heat treatment on the stability of panaxadiol saponins (인삼청량음료 제조에 관한 연구 (제2보) pH 및 처리조건이 Panaxadiol Saponin의 안정성에 미치는 영향)

  • 양재원;도재호
    • Journal of Ginseng Research
    • /
    • v.6 no.1
    • /
    • pp.25-29
    • /
    • 1982
  • This investigation was carried out to study the influence of pH and heat treatment on the ginsenosides in the white ginseng extract. Changes in ginsenosides (Rb1, Rb2, ,Rc, Rd) and free sugar were measured by the peak area variation of HPLC chromatogram during 25 hours heat treatment at the various level of pH. It was found that :(1) The peak areas of Rb1. Rb2, Rc and Rd on the HPLC chromatogram were decreased remarkably below pH 4.0 and more decrease was found as the temperature and heating time increased. (2) Those of glucose and arabinose were increased remarkably. It is considrered that the increase of glucose and the formation of arabinose result from the hydrolysis of ginsenoside( Rb1, Rb2, Rc, Rd) linked with sugars.

  • PDF

Changes in Functional Properties of Casein by Different Chemical Modifications

  • Kim, Il-Sung;Choi, Jin-Ho;Hong, Jeong-Hwa
    • Preventive Nutrition and Food Science
    • /
    • v.2 no.1
    • /
    • pp.17-22
    • /
    • 1997
  • Casein was chemically modified with acetic, succinic, and maleic anhydride and changes in functional pro-perties were evaluated as affected by the degree of modification. Chemical modification resulted in casein with unique functional properties depending upon the type of anhydrid used and the degree of modification. It was possible to control heat coagulation, calcium precipitability, forming and emulsion capacity and stability. At pH 4.5 heat coagulation was 0% in the case 74.1% acetylated casein; on the contrary, succinylation and maleyation resulted in highly heat sensitive protein. Foaming properties were improved markedly by suc-cinylation and maleylation at pH 4.5. However, emulsifying properties were enhanced only by maleylation.

  • PDF

Heat-resistant Enamel Varinish (내열성 에나멜 바니쉬)

  • Kim, Yang-Kook;Bae, Hun-Jai
    • Applied Chemistry for Engineering
    • /
    • v.4 no.2
    • /
    • pp.264-272
    • /
    • 1993
  • Current research aimed at investigating of heat-resistance of magnet wire to endow miniaturizing electronic equipment with a high efficiency or reliability. Thermal stability of magnet wire has a close relationship with physical properties of polymeric coating that is formed from enamel varnish. Design of heat-resistant enamel varnish and coating technology of varnish solution were briefly described. Some factors which have a thermal effect on wire were discussed through the evaluation method of the wire properties.

  • PDF

An Study on Efficiency and Application of Thermal Siphon in the Permafrost (영구동토 지대에서 Thermal Siphon의 효율성 연구)

  • Kang, Jae-Mo;Kim, Hak-Seung
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.09a
    • /
    • pp.963-966
    • /
    • 2009
  • A Construction of pipe line foundation and railroad, buildings in a permafrost area requires engineering technology of ground stabilization. In the permafrost area, thermal siphons have been used to stabilize foundation by eliminating the heat of ground to the air. the thermal siphon is a passive heat transfer device that operates by convection through vaporization and condensation. The heat transfer from ground to the air is driven by a temperature difference across the unit. A buried part in ground working as vaporizing function and upper part work as condensing. In this study, buried thermal siphon around the pipe lines laid in the Vladivostok site and measuring temperature variation. It is found that the thermal siphons freezing ground faster and decrease temperature variation in winter season.

  • PDF

Optimal Design of a Heat Exchanger with Vortex Generator (와류발생기가 부착된 열교환기 최적설계)

  • Park, Kyoung-Woo;Choi, Dong-Hoon
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.1219-1224
    • /
    • 2004
  • In this study the optimization of plate-fin type heat sink with vortex generator for thermal stability is conducted numerically. To acquire the optimal design variables, the CFD and mathematical optimization are integrated. The flow and thermal fields are predicted using the finite volume method. The optimization is carried out by means of the sequential quadratic programming (SQP) method. The results show that when the temperature rise is less than 40 K, the optimal design variables are as follows; $B_1=2.584mm$, $B_2=1.741mm$, and t = 7.914 mm. Comparing with the initial design, the temperature rise is reduced by 4.2 K, while the pressure drop is increased by 9.43 Pa. The Pareto optimal solutions are also presented between the pressure drop and the temperature rise.

  • PDF

Stabilizing Effect of Ginseng Saponin and Water Extract on Malate Dehydrogenase from Pigeon Breast Muscle (인삼사포닌 및 인삼수용성 추출물이 비둘기 가슴근육으로부터 분리된 Malate Dehydrogenase에 미치는 안정화효과)

  • Kim, Du-Ha;Sin, Mun-Hui;Hong, Sun-Geun
    • Journal of Ginseng Research
    • /
    • v.7 no.1
    • /
    • pp.88-93
    • /
    • 1983
  • Studies were carried out to elucidate the protein stabilizing effect of ginseng. Malate dehydrogenase (EC 1.1.1.37) was used as a protein and the rate constant of the enzyme inactivation was determined under the heat denaturation condition. There was an optimum pH for the enzyme stability, the rate constant of the enzyme inactivation was minimum at BH 8.8. The rate constant was increased at lower and higher pH regions than the optimum pH. The inactivation reaction followed the Arrehnius law and the activation energy was measured as 36.8kcal/mole. The reaction rate was not affected by the enzyme concentration and thus it was assumed to be unimolecular first order reaction. The water extract of red ginseng decreased the rate constant of Malate dehydrogenate under heat inactivation condition to stabilize the enzyme activity. Purified ginseng saponin also stabilized the enzyme against heat inactivation.

  • PDF

A Study on the Application of Underbody Coating for Vehicles with Shell Thickness of Thermally Expandable Microspheres

  • Kim, Jae-Chun;Jeon, Young-Bae;You Park, Hae-Na;Kim, Ji-Hoo;Kim, Myeong Woo
    • Elastomers and Composites
    • /
    • v.53 no.3
    • /
    • pp.136-140
    • /
    • 2018
  • In this study, research was conducted into the manufacture of thermally expandable microspheres for automotive underbody coatings and applications in industry. In particular, the relationship between heat resistance and the ratio of crosslinking agents and initiators in the manufacture of the thermally expandable microspheres was investigated. We focused on the results with various cross-linking agents; our aim was to make the walls of the microspheres thicker to solve the problem of reductions in size caused by shrinkage when the microspheres are heated to $T_m$ ($T_{max}$). We observed the sectional thickness and surface of the samples with thicker walls. The thick thermally expandable microspheres showed reduced shrinkage and excellent stability in spite of prolonged exposure to heat.

Study on the Performance of an ATES Geothermal Heat Pump System and Economic Analysis (ATES 열펌프 시스템 성능 및 경제성 분석에 관한 연구)

  • Oh, Myung-Suk;Choi, Jong-Min
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.24 no.4
    • /
    • pp.289-296
    • /
    • 2012
  • The aim of this study is to investigate the performance of a heating and cooling system with aquifer thermal energy storage(ATES heat pump system) known as one of the underground thermal energy storage application systems. The ATES system was composed of heat pump unit and ATES, which was installed in a factory building located in Anseoung. The system represented very high heating and cooling performance, and showed nearly constant COP at each heating and cooling season due to the stability of EWT. The economic analysis about an ATES system and a conventional system was also executed. The conventional system adopted an air-conditioner in the summer season and a LNG boiler in the winter season. The payback period of the ATES system was estimated by 6.62 years.

Construction and Evaluation of Thermal Crack Stability about Bottom Slab of the #219 LNG Underground Tank in Incheon (인천 LNG 지하탱크 #219 Bottom Slab시공 및 온도균열 안정성 평가)

  • Son, Young-Jun;Ha, Jae-Dam;Um, Tai-Sun;Lee, Jong-Ryul;Park, Jong-Sik
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.11a
    • /
    • pp.689-692
    • /
    • 2006
  • The crack of concrete induced by the heat of hydration is a serious problem, particularly in massive concrete structures. In order to control the temperature crack of massive concrete, the selection of appropriate materials like low heat cement, mixture materials, etc. is essential. In tills study, mix proportion using low heat portland cement and lime stone powder was designed and the best mix proportion, B-1, was selected. When bottom slab of the #219 LNG tank in Incheon was constructed, concrete temperature was measured. And thermal stress was analyzed about bottom slab of the LNG tank. As results of the thermal analysis, crack index was 1.60 in bottom slab and satisfied with construction specifications(over 1.0).

  • PDF