• Title/Summary/Keyword: Heat stability

Search Result 1,560, Processing Time 0.033 seconds

Thermal Stability of Hydrogen Doped AZO Thin Films Prepared by r.f. Magnetron Sputtering

  • Park, Yong-Seop;Lee, Su-Ho;Kim, Jung-Gyu;Ha, Jong-Chan;Hong, Byeong-Yu;Lee, Jun-Sin;Lee, Jae-Hyeong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.699-700
    • /
    • 2013
  • Aluminum and hydrogen doped zinc oxide (AZHO) films were prepared by r.f. magnetron sputtering. The structural, electrical, and optical properties of the AHZO films were investigated in terms of the annealing conditions to study the thermal stability. The XRD measurements revealed that the degree of c-axis orientation was decreased and the crystallintiy of the films was deteriorated by the heat treatment. The electrical resistivity was significantly increased when the films were annealed at higher temperature. Although the optical transmittance of AHZO films didn't highly changed by heat treatment, the optical band gap was reduced, regardless of annealing temperature and duration. The thermal stability of AHZO films was worse compared to AZO films.

  • PDF

Immobilization of Keratinase from Aspergillus flavus K-03 for Degradation of Feather Keratin

  • Kim, Jeong-Dong
    • Mycobiology
    • /
    • v.33 no.2
    • /
    • pp.121-123
    • /
    • 2005
  • Extracellular keratinase isolated from Aspergillus flavus K-03 was immobilized on calcium alginate. The properties and reaction activities of free and immobilized keratinase with calcium alginate were characterized. The immobilized keratinase showed proteolytic activity against soluble azo-casein and azo-keratin, and insoluble feather keratin. Heat stability and pH tolerance of keratinase were greatly enhanced by immobilization. It also displayed a higher level of heat stability and an increased tolerance toward alkaline pHs compared with free keratinase. During the durability test at $40^{\circ}C$, 48% of the original enzyme activity of the immobilized keratinase was remained after 7 days of incubation. The immobilized keratinase exhibited better stability, thus increasing its potential for use in industrial application.

The Effect of Thermal Decomposition of Epoxy Resin for a Variation of Hardener (에폭시수지의 경화제 변화량에 따르는 열분해 영향)

  • Park, Keun-Ho;Lee, Yong-Sook;Song, Ju-Yeong;Lee, Soo;Kim, Sung-Il
    • Journal of the Korean Applied Science and Technology
    • /
    • v.24 no.4
    • /
    • pp.393-398
    • /
    • 2007
  • We investigated heat stability of epoxy resin products and epoxy resin according to the influence hardener. The heat flow which shows the degree of thermal decomposition of the epoxy resin product and epoxy resin measured by using the differential scanning calorimeter (DSC). As a result, we found that in the case of heat stability for epoxy resin as hardener was added, the ratio of one to one (epoxy resin : hardener) was the most suitable in air condition and nitrogen atmosphere.

Characteristics of dairy goat milk positive reaction of the alcohol precipitation test in Korea (우리나라 유산양 알코올 양성유의 특징에 관한 연구)

  • Kim, Hye-Ra;Jung, Ji-Young;Cho, In-Young;Yu, Do-Hyeon;Shin, Sung-Shik;Son, Chang-Ho;Ok, Ki-Seok;Hur, Tai-Young;Jung, Young-Hun;Choi, Chang-Yong;Suh, Guk-Hyun
    • Korean Journal of Veterinary Service
    • /
    • v.36 no.4
    • /
    • pp.255-261
    • /
    • 2013
  • The objective of the present study was to determine the minimum alcohol (ethanol) concentration that gives rise to the coagulation of goat milk for the alcohol precipitation test, and to evaluate the physical parameters of goat milk which include alcohol and heat stability. A total of 1,295 udder-half milk samples from 648 lactating dairy goats were collected from seven farms in Jeonnam province, Republic of Korea, to determine the alcohol and heat stability. The majority (99.6%) of the samples were coagulated when 70% ethanol was added to the milk, while only 11.0% of the samples were precipitated by the addition of an equal volume of 45% ethanol. With the concentration of 65%, 60%, 55% and 50% aqueous ethanol, 99.2%, 96.8%, 81.0% and 52.8% of the milk samples were coagulated, respectively. Of 1,295 dairy goat milk samples tested for heat stability, 127 (9.8%) were coagulated by boiling. Among the 143 alcohol test-positive udder-half milk samples, 52 (4.0%) were unstable by heat test, while 1,032 (79.7%) of the 1,152 alcohol test-negative milk samples were stable by heat test. According to the results of boiling test, sensitivity and specificity of 45% alcohol precipitation test were 0.3023 (95% CI: 0.2346~0.3772) and 0.9190 (95% CI: 0.9017~0.9344), respectively. The contents of protein and the specific gravity were higher in the milk samples of 45% alcohol test-positive than in those of 45% alcohol test-negative. However, lower levels of lactose and milk urea nitrogen were observed in the milk samples of 45% alcohol test-positive compared to the alcohol test-negative milk samples. The lowest pH values ($6.73{\pm}0.20$) were shown in the 45% alcohol test-negative and heat-unstable milk samples, while the lowest values of somatic cell counts and bacterial counts were shown in the 45% alcohol test-negative and heat-stable milk samples. Results of this study suggest that the alcohol precipitation for dairy goat milk may have to be tested with ethanol concentration less than 45% for the determination of freshness and heat-stability.

COMBUSTION STABILITY OF DIESEL-FUELED HCCI

  • Shi, L.;Deng, K.;Cui, Y.
    • International Journal of Automotive Technology
    • /
    • v.8 no.4
    • /
    • pp.395-402
    • /
    • 2007
  • Homogeneous Charge Compression Ignition (HCCI) shows great potential for low $NO_x$ emission but is hampered by the problem of no direct method to control the combustion process. Therefore, HCCI combustion becomes unstable easily, especially at lower and higher engine load. This paper presents a method to achieve diesel-fueled HCCI combustion, which involves directly injecting diesel fuel into the cylinder before the piston arrives at top dead center in the exhaust stroke and adjusting the valve overlap duration to trap more high temperature residual gas in the cylinder. The combustion stability of diesel-fueled HCCI combustion and the effects of engine load, speed, and valve overlap on it are the main points of investigation. The results show that: diesel-fueled HCCI combustion has two-stage heat release rate (low temperature and high temperature heat release) and very low $NO_x$ emission, combustion stability of the HCCI engine is worse at lower load because of misfire and at higher load because of knock, the increase in engine speed aids combustion stability at lower load because the heat loss is reduced, and increasing negative valve overlap can increase in-cylinder temperature which aids combustion stability at lower load but harms it at higher load.

Change of Dimensional Stability of Thermally Compressed Korean Pine (Pinus koraiensis Sieb. et Zucc.) Wood by Heat Treatment (잣나무 열압밀화재의 열처리에 의한 치수안정성 변화)

  • Cho, Beom-Geun;Hwang, Sung-Wook;Kang, Ho-Yang;Lee, Won-Hee
    • Journal of the Korean Wood Science and Technology
    • /
    • v.43 no.4
    • /
    • pp.470-477
    • /
    • 2015
  • This study was carried out to investigate the change of dimensional stability of thermally compressed Korean pine (Pinus koraiensis Sieb. et Zucc.) wood by post heat treatment. Specific gravity of compressed wood was notably increased with thermal compression. In the compression set 50%, compressed Korean pine showed a specific gravity of 0.84. The amount of water absorption and swelling of thermally compressed Korean pine decreased with increasing temperature and time of the heat treatment. Set recovery also decreased with increasing temperature and time of heat treatment. Thermally compressed Korean pine that heat-treated in $120^{\circ}C$ for 24 hours showed a set recovery of 3.8%, whereas non-treated group showed 11.5%. Therefore, it was confirmed that the thermal treatment was a very effective method for the dimensional stability of the heat compressed wood.

Thermal Stabilization of Aspergillus phytase by L-Arginine

  • Sunghoon Ryu;Park, Tae-Gwan
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.3 no.1
    • /
    • pp.32-34
    • /
    • 1998
  • Phytase from Aspergillus species is a very heat unstable enzyme which inactivates to a great extent during the thermal processing of animal feed formulation. Various protein stabilization additives were tested to improve its heat stability. Among them, a basic amino acid, L-arginine remarkably increased the thermal stability of phytase in an aqueous solution state.

  • PDF

Analysis on Quench Propagation Charactreristics of HTS Tape (고온초전도 테이프 선재의 \ulcorner치 전파 특성 해석)

  • 이지광;김지훈;류경우;차귀수;한송엽
    • Progress in Superconductivity and Cryogenics
    • /
    • v.2 no.1
    • /
    • pp.36-39
    • /
    • 2000
  • The main issues for the power application of high Tc superconducting tape are lower AC loss and higher stability conditions. HTS tape has large stability margin by high heat capacity of superconductor itself and high temperature margin. But, it can be damaged by continuous heat generation at quench point, because normal zone propagation velocity by generating heat is very low. Here, we analyze the quench propagation characteristics using finite element method for BSCCO-2223 HTS tape.

  • PDF

SOME STABILITY RESULTS FOR SEMILINEAR STOCHASTIC HEAT EQUATION DRIVEN BY A FRACTIONAL NOISE

  • El Barrimi, Oussama;Ouknine, Youssef
    • Bulletin of the Korean Mathematical Society
    • /
    • v.56 no.3
    • /
    • pp.631-648
    • /
    • 2019
  • In this paper, we consider a semilinear stochastic heat equation driven by an additive fractional white noise. Under the pathwise uniqueness property, we establish various strong stability results. As a consequence, we give an application to the convergence of the Picard successive approximation.

A Characteristics of Heat Affected Zones in Weld Repair for a Damaged CrMoV Turbine Rotor Steel (손상된 CrMoV 터빈로터강의 보수용접에서 후열처리 온도에 따른 열영향부의 특성)

  • 김광수;오영근;안병국
    • Journal of Welding and Joining
    • /
    • v.14 no.4
    • /
    • pp.89-98
    • /
    • 1996
  • This study was performed to establish the characteristics of the heat affected zones from view point of the repair weldability for a damaged CrMoV steam turbine rotor steel. Characterization of the heat affected zones of the weldment was conducted with respect to various of postweld heat treatment temperatures, $566^{\circ}C$, $621^{\circ}C$ and $677^{\circ}C$. The evaluations of the heat affected zones were carried out in terms of microstructural characterization, microhardness measurements, Charpy v-notch impact, tensile and stress-rupture tests. The results indicated that the effect of the postweld heat treatment at $677^{\circ}C$ exhibited the favorable microstructure and mechanical properties for the stability of the heat affected zones. While the heat affected zone of the weldment, produced without postweld heat treatment, displayed the inferior toughness and microstructure indicating localized carbide precipitations on the grain boundary. It was also indicated that the stability of the heat affected zones were deteriorated by the formation of the cavitation on the grain boundaries.

  • PDF