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SOME STABILITY RESULTS FOR SEMILINEAR

STOCHASTIC HEAT EQUATION DRIVEN BY A

FRACTIONAL NOISE

Oussama El Barrimi and Youssef Ouknine

Abstract. In this paper, we consider a semilinear stochastic heat equa-
tion driven by an additive fractional white noise. Under the pathwise

uniqueness property, we establish various strong stability results. As a

consequence, we give an application to the convergence of the Picard
successive approximation.

1. Introduction

During the last past years, some spectacular advances have been made in
order to study the solutions to stochastic partial differential equations driven
by general Brownian noises. Most of the research developed has been mainly
focused on the analysis of heat and wave equations perturbed by Gaussian white
noises (see, for instance, [5,8,23]). Recently, there has been a growing interest
in studying stochastic partial differential equations driven by a Gaussian noise
which has the covariance structure of the fractional Brownian motion (fBm)
in time, combined with a white spatial covariance structure (see, for instance,
[14,20]). This interest comes from the large number of applications of the fBm
in practice. To list only a few examples of the appearance of fractional noises in
practical situations, we mention [16] for biophysics, [4] for financial time series,
[12] for electrical engineering, and [10] for physics.

Let us now consider the quasi-linear stochastic partial differential equation
(SPDE)

(1)
∂

∂t
u(t, x) =

∂2

∂2x
u(t, x) + b(t, x, u(t, x)) +

∂2

∂t∂x
WH(t, x),

with the initial condition u(0, x) = u0(x), x ∈ [0, 1] and Neumann boundary
conditions

∂

∂x
u(t, 0) =

∂

∂x
u(t, 1) = 0.
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We will assume that u0 ∈ C0[0, 1], where C0[0, 1] denotes the set of continuous
functions v : [0, 1] → R vanishing at 0. Here b : [0, T ] × [0, 1] × R → R is a
measurable function, and WH = {WH(t, x), t ∈ [0, T ], x ∈ [0, 1]} is a zero
mean Gaussian process with covariance

E(WH(t, x)WH(s, y)) =
1

2

(
t2H + s2H − |t− s|2H

)
(x ∧ y).

That is, WH is a Brownian motion in the space variable and a fractional
Brownian motion with Hurst parameter H > 1

2 in the time variable.
Existence and uniqueness of a solution to (1) when the Hurst parameter

H > 1
2 is already known under weaker conditions on the drift. More specifically,

in [19] the authors show that pathwise uniqueness for (1) holds if the drift b is
allowed to be bounded and satisfies the following Hölder continuity property

(2) |b(t, x, z)− b(s, x, r)| ≤ C(|t− s|γ + |z − r|α),

where γ > H − 1
2 and α > 2H−1

3H−1 . Moreover, u0 is also Hölder continuous of

order γ. We mention that (2) will not be used in the calculus below, it will
just ensure the pathwise uniqueness property for the SPDE (1).

The aim of the present paper is to establish some various stability results
under pathwise uniqueness of solutions. Indeed, we first prove that the path-
wise uniqueness implies the stability of the solutions with respect to the initial
condition. Then, we treat the relation between the pathwise uniqueness and
the convergence of the Picard successive approximation, where we give a nec-
essary and sufficient conditions which ensure the convergence of this latter.
Furthermore, the stability of the solution under Lipschitz condition on the
drift coefficient in a Hölder space is also given. Notice that the last stability
result could be useful for situations where the drift is highly irregular and needs
to be approximated by smooth drifts. We point out that the investigation of
such questions for stochastic differential equations is carried out in [3], where
the authors established some strong stability properties of the solutions using
Skorokhod’s selection theorem. The same result is investigated for stochastic
differential equations driven by fractional Brownian motion in [13], also a con-
siderable result in this direction has been established in [2] for an SPDE driven
by a Gaussian noise white in time and colored in space.

The paper is organized as follows. In Section 2, we introduce some prop-
erties, definitions, and preliminary results. Section 3 is devoted to prove the
stability with respect to the initial condition. In Section 4, we study the con-
vergence of the Picard successive approximation. In Section 5, the stability of
the solution under Lipschitz condition on the drift coefficient is investigated.
Finally, an appendix gathers some technical results that will be needed in the
work.
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2. Preliminaries

In this section, we give some properties of the fractional white noise, defini-
tions and some tools used in the proofs.

For any H > 1
2 , let us first introduce the formal definition of the fractional

white noise ∂2

∂t∂xW
H(t, x) which appears in (1). Consider a centered Gaussian

family of random variables WH = {WH(t, A) : t ∈ [0, T ], A ∈ B[0, 1]} defined
on a complete probability space (Ω,F , P ), with the covariance function

E(WH(t, A)WH(s,B)) =
1

2
λ(A ∩B)

(
t2H + s2H − |t− s|2H

)
,

s, t ∈ [0, T ], A,B ∈ B[0, 1], where λ denotes the Lebesgue measure. Notice
that for a fixed t, WH(t, ·) is a Brownian measure with intensity t2H , and for
a fixed A ∈ B[0, 1] with λ(A) 6= 0, the process 1√

λ(A)
WH(·, A) is a fractional

Brownian motion with Hurst parameter H. We will say that WH is a fractional
noise with Hurst parameter H.

For each t ∈ [0, T ], we denote by FHt the σ-field generated by the random
variables {WH(t, A) : t ∈ [0, T ], A ∈ B[0, 1]} and the sets of probability zero.
We denote by P the σ-field of progressively measurable subsets of [0, T ]× Ω.

Let ζ be the set of step functions on [0, T ]× [0, 1] and H be the Hilbert space
defined as the closure of ζ with respect to the scalar product

〈1[0,t]×A,1[0,s]×B〉H = E(WH(t, A)WH(s,B)).

The mapping 1[0,t]×A →WH(t, A) can be extended to an isometry between H
and the Gaussian space H1(WH) associated with WH , such isometry is denoted
by

ϕ→WH(ϕ) :=

∫
[0,t]×A

ϕ(s, y)WH(ds, dy).

Now we introduce the linear operator K∗H from ζ to L2([0, T ] × [0, 1]) defined
by

(K∗Hϕ)(s, x) = KH(T, s)ϕ(s, x) +

∫ T

s

(ϕ(t, x)− ϕ(s, x))
∂KH

∂t
(t, s)dt,

where KH is the square integrable kernel given by

(3) KH(t, s) = cH(t−s)H− 1
2 +cH

[
(
1

2
−H)

∫ t

s

(u− s)H− 3
2 (1− (

s

u
)

1
2−H)du

]
,

and cH =
[

2HΓ( 3
2−H)

Γ( 1
2 +H)Γ(2−2H

]1/2
. From (3) we have

∂KH

∂t
(t, s) = cH

(
H − 1

2

)(s
t

) 1
2−H

(t− s)H− 3
2 .
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Moreover, the kernel KH satisfies the following property∫ s∧t

0

KH(t, r)KH(s, r)dr =
1

2

(
t2H + s2H − |t− s|2H

)
= RH(t, s),

RH(t, s) being the covariance kernel of the fractional Brownian motion (see for
instance [1, 11,17]).

The operator K∗H is an isometry between ζ and L2([0, T ] × [0, 1]) that can
be extended to the Hilbert space H, then for any pair of step functions ϕ and
ψ in ζ we have

〈K∗Hϕ,K∗Hψ〉L2([0,T ]×[0,1]) = 〈ϕ,ψ〉H,
because

(K∗H1[0,t]×A)(s, x) = KH(t, s)1[0,t]×A(s, x).

Define the process B = {B(t, A), t ∈ [0, T ], A ∈ B[0, 1]} by

B(t, A) = WH((K∗H)−11[0,t]×A).

Then, B is a spacetime white noise, moreover WH has the integral representa-
tion

WH(t, x) =

∫ t

0

∫ x

0

KH(t, s)B(ds, dy).

We say that a P×B[0, 1] measurable and continuous random field u = {u(t, x),
t ∈ [0, T ], x ∈ [0, 1]} is a solution to (1) if∫ T

0

∫ 1

0

|b(s, x, u(s, x))|dxds <∞

a.s., and for any φ ∈ C2([0, 1]) such that φ′(0) = φ′(1) = 0,∫ 1

0

u(t, x)φ(x)dx =

∫ 1

0

u0(x)φ(x)dx(4)

+

∫ t

0

∫ 1

0

(u(t, x)φ′′(x) + b(s, x, u(s, x))φ(x)) dxds

+

∫ t

0

∫ 1

0

φ(x)WH(t, x),

a.s., for all t ∈ [0, T ]. Notice that∫ t

0

∫ 1

0

φ(x)WH(t, x) =

∫ t

0

∫ 1

0

KH(t, s)φ(x)B(ds, dy)

is well defined. We refer to [19] for a detailed account of these notions.
We denote by G(t, x, y) the fundamental solution of the heat equation on

R+ × [0, 1] with Neumann boundary conditions.
It is well known that

G(t, x, y) =
1√
2πt

∑
n∈Z

{
exp

{
− (y − x− 2n)2

4t

}
+ exp

{
− (y + x− 2n)2

4t

}}
.
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Assume we are given a bounded and measurable function b(t, x, r). By a solu-
tion to our main SPDE (1), we shall mean an adapted and continuous random
field u(t, x) such that

u(t, x) =

∫ 1

0

G(t, x, y)u0(y)dy(5)

+

∫ t

0

∫ 1

0

G(t− s, x, y)b(s, y, u(s, y))dyds

+

∫ t

0

∫ 1

0

G(t− s, x, y)WH(ds, dy),

t ∈ [0, T ], x ∈ [0, 1], where the last term is equal to

WH(1[0,t](·)G(t− ·, x, ·)) =

∫ t

0

∫ 1

0

K∗HG(t− s, x, y)B(ds, dy).

Definition 2.1. We say that the pathwise uniqueness holds for equation (5)
if whenever (u,WH) and (ũ,WH) are two solutions of equation (5) defined on
the same probability space

(
Ω,F , P

)
, then u and ũ are indistinguishable.

The main tool used in the proofs is Skorokhod’s selection theorem given by
the following lemma.

Lemma 2.2 ([22]). Let (S, ρ) be a complete separable metric space, and let P ,
Pn, n = 1, 2, . . . be probability measures on (S,B(S)) such that Pn converges

weakly to P as n→∞. Then, on a probability space (Ω̃, F̃ , P̃ ), we can construct
S-valued random variables u, un, n = 1, 2, . . . such that:

(i) Pn = P̃un , n = 1, 2, . . . and P = P̃u, where P̃un and P̃u are respectively
the laws of un and u;

(ii) un converges to u, P̃–a.s.

The following lemma gives criteria which allow us to apply Lemma 2.2 to
sequences of laws associated to continuous processes.

Lemma 2.3 ([22]). Let {un(t, x), n ≥ 1}, be a sequence of real valued contin-
uous processes satisfying the following two conditions:

(i) There exist positive constants M and γ such that sup
n≥1

E[|un(0, 0)|γ ] ≤

M ;
(ii) there exist positive constants α, β1, β2 and C, such that

sup
n≥1

E[|un(t, x)− un(s, y)|α] ≤ C
(
|t− s|2+β1 + |x− y|2+β2

)
for every t, s ∈ [0, T ], and x, y ∈ [0, 1].

Then, there exist a subsequence (nk), a probability space (Ω̃, F̃ , P̃ ) and a real

valued continuous processes ũ, ũnk , k = 1, 2, . . ., defined on Ω̃ such that

(1) The laws of ũnk and unk coincide;
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(2) ũnk(t, x) converges to ũ(t, x) uniformly on every compact subset on

R+ × R P̃–a.s.

We will need also to give sufficient conditions which ensure the tightness
criterium on the plane that generalizes a well-known theorem of Billingsley.

Theorem 2.4 ([24, Proposition 2.3]). Let {un(t, x), n ≥ 1} be a family of
random variables taking values in C([0, T ] × [0, 1]). The family of the laws of
un is tight, if the following two conditions are satisfied:

(i) There exists a positive constant γ such that sup
n≥1

E[|un(0, 0)|γ ] <∞;

(ii) there exist positive constants α, β1, β2 and C such that

sup
n≥1

E[|un(t, x)− un(s, y)|α] ≤ C
(
|t− s|2+β1 + |x− y|2+β2

)
for every t, s ∈ [0, T ], and x, y ∈ [0, 1].

We will also make use of the following lemma which gives information about
the increments of the Green function that can be found in [6, Lemma B.1], and
in [7, Lemma 2.1].

Lemma 2.5. (a) For any α > 0∫ 1

0

|G(t, x, y)|αdy ≤ Ct
1−α
2 .

(b) Let α ∈ ( 3
2 , 3). Then, for all t ∈ [0, T ] and x, y ∈ [0, 1],∫ t

0

∫ 1

0

|G(t− s, x, z)−G(t− s, y, z)|αdzds ≤ C|x− y|3−α.

(c) Let α ∈ (1, 3). Then, for all s, t ∈ [0, T ] such that s ≤ t and x ∈ [0, 1],∫ s

0

∫ 1

0

|G(t− r, x, y)−G(s− r, x, y)|αdydr ≤ C|t− s|
3−α
2 .

(d) Under the same hypothesis as (c),∫ t

s

∫ 1

0

|G(t− r, x, y)|αdydr ≤ C|t− s|
3−α
2 .

3. Stability with respect to the initial condition

In the theory of ordinary differential equations with continuous coefficients,
uniqueness of solutions is sufficient to ensure the continuous dependence of the
solution with respect to the initial condition (see for instance [9]). The purpose
of this section is to give an analogue of the above result in the stochastic case.
Define the sequence

un(t, x) =

∫ 1

0

G(t, x, y)un0 (y)dy(6)
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+

∫ t

0

∫ 1

0

G(t− s, x, y)b(s, y, un(s, y))dyds

+

∫ t

0

∫ 1

0

G(t− s, x, y)WH(ds, dy),

with the initial condition un(0, x) = un0 (x), x ∈ [0, 1].
Assume that un0 (x) converges to u0(x) uniformly in x ∈ [0, 1]. Then, we

have the following:

Theorem 3.1. Let b be a continuous and bounded function. Then under path-
wise uniqueness for SPDE (5), we get

lim
n→∞

E

[
sup

(t,x)∈[0,T ]×[0,1]

|un(t, x)− u(t, x)|2
]

= 0.

Before we proceed to the proof of Theorem 3.1, we first state the following
technical lemma which gives a tightness criterium on the plane.

Lemma 3.2. Let b be a bounded function. Suppose that {un0}n≥0 is a sequence
of functions which converges uniformly to u0. Then, the sequence {un}n≥0

defined by (6) is tight in C([0, T ]× [0, 1]).

Proof. Set un(t, x) = u1
n(t, x) + u2

n(t, x) + u3(t, x) where

u1
n(t, x) =

∫ 1

0

G(t, x, y)un0 (y)dy,

u2
n(t, x) =

∫ t

0

∫ 1

0

G(t− s, x, y)b(s, y, un(s, y))dyds,

u3(t, x) =

∫ t

0

∫ 1

0

G(t− s, x, y)WH(ds, dy).

We first prove that, for any p ≥ 2

(7) sup
n
E

[
sup

(t,x)∈[0,T ]×[0,1]

|un(t, x)|p
]
≤ C.

Indeed, we know that since un0 converges uniformly to u0, we have

(8) |un(t, x)|p ≤ C
(
1 + |u2

n(t, x)|p + |u3(t, x)|p
)
.

For u2
n(t, x), by Hölder’s inequality, we obtain

E

[
sup

(t,x)∈[0,T ]×[0,1]

|u2
n(t, x)|p

]

≤ Cp

(∫ T

0

∫ 1

0

(G(t− s, x, y))2dyds

) p
2

E

(∫ T

0

∫ 1

0

b(s, y, un(s, y))2dyds

) p
2

.
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Due to Lemma 2.5, and the boundedness of b

(9) E

[
sup

(t,x)∈[0,T ]×[0,1]

|u2
n(t, x)|p

]
≤ C.

For u3(t, x), we know that

E

[
sup

(t,x)∈[0,T ]×[0,1]

|u3(t, x)|p
]
≤ Cp

(∫ T

0

∫ 1

0

[K∗H(G(t− s, x, y))]2dyds

) p
2

.

Using the continuous embedding established in [18]

(10) L
1
H ([0, T ]× [0, 1]) ⊂ H,

together with the estimates in Lemma 2.5, it holds that(∫ T

0

∫ 1

0

[K∗H(G(t− s, x, y))]2dyds

) p
2

≤ CH

(∫ T

0

∫ 1

0

(G(t− s, x, y))
1
H dyds

)pH
≤ C.

From this we deduce that

(11) E

[
sup

(t,x)∈[0,T ]×[0,1]

|u3(t, x)|p
]
≤ C.

Therefore, combining (8) together with (9)–(11) estimate (7) follows.
On the other hand, let (t′, x′), (t, x) ∈ [0, T ] × [0, 1], and it is assumed,

without lost of generality, that t′ > t and x′ > x. Then, we have for any m > 8

E|u2
n(t′, x′)− u2

n(t, x)|m

≤ CmE

(∣∣∣∣∫ t

0

∫ 1

0

(G(t′ − s, x′, y)−G(t− s, x′, y))b(s, y, un(s, y))dyds

∣∣∣∣)m
+ CmE

(∣∣∣∣∫ t

0

∫ 1

0

(G(t− s, x′, y)−G(t− s, x, y))b(s, y, un(s, y))dyds

∣∣∣∣)m
+ CmE

(∣∣∣∣∣
∫ t′

t

∫ 1

0

(G(t′ − s, x′, y)b(s, y, un(s, y))dyds

∣∣∣∣∣
)m

.

By Hölder’s inequality we obtain

E|u2
n(t′, x′)− u2

n(t, x)|m

≤ Cm

(∫ t

0

∫ 1

0

(G(t′ − s, x′, y)−G(t− s, x′, y))2dyds

)m
2
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× E
(∫ t

0

∫ 1

0

b(s, y, un(s, y))2dyds

)m
2

+ Cm

(∫ t

0

∫ 1

0

(G(t− s, x′, y)−G(t− s, x, y))2dyds

)m
2

× E
(∫ t

0

∫ 1

0

b(s, y, un(s, y))2dyds

)m
2

+ Cm

(∫ t′

t

∫ 1

0

(G(t′ − s, x′, y))2dyds

)m
2

× E

(∫ t′

t

∫ 1

0

b(s, y, un(s, y))2dyds

)m
2

.

In view of the Lemma 2.5, and the fact that b is bounded, we get that

(12) E|u2
n(t′, x′)− u2

n(t, x)|m ≤ Cm(|t′ − t|m4 + |x′ − x|m2 ).

For u3(t, x), we have for any m > 8

E|u3(t′, x′)− u3(t, x)|m(13)

≤ Cm

(∫ t

0

∫ 1

0

[K∗H(G(t′ − s, x′, y)−G(t− s, x′, y))]2dyds

)m
2

+ Cm

(∫ t

0

∫ 1

0

[K∗H(G(t− s, x′, y)−G(t− s, x, y))]2dyds

)m
2

+ Cm

(∫ t′

t

∫ 1

0

[K∗H(G(t′ − s, x′, y))]2dyds

)m
2

= Cm(I1 + I2 + I3).

The three terms of the right hand side of the previous inequality will be dealt
with as in [19]. Indeed, using the continuous embedding (10) and the estimates
in Lemma 2.5
(14)

I1 ≤
(∫ t

0

∫ 1

0

|G(t′ − s, x′, y)−G(t− s, x′, y)| 1H dyds
)mH

≤ C |t′ − t|
m
2 (3H−1)

.

The following estimates also hold
(15)

I2 ≤
(∫ t

0

∫ 1

0

|G(t− s, x′, y)−G(t− s, x, y)| 1H dyds
)mH

≤ C |x′ − x|m(3H−1)
,

and

(16) I3 ≤

(∫ t′

t

∫ 1

0

(G(t′ − s, x′, y))
1
H dyds

)mH
≤ C |t′ − t|

m
2 (3H−1)

.
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Rearranging (13) in view of (14)–(16) yields

(17) E|u3(t′, x′)− u3(t, x)|m ≤ C
(
|t′ − t|

m
2 (3H−1)

+ |x′ − x|m(3H−1)
)
.

Then, in view of estimates (12) and (17) we deduce that the family {u2
n + u3;

n ≥ 0} is tight in C([0, T ]× [0, 1]) and since

(18)

∣∣∣∣u1
n(t, x)−

∫ 1

0

G(t, x, y)u0(y)dy

∣∣∣∣ ≤ sup
x∈[0,1]

|un0 (x)− u0(x)| → 0

it follows that un = u1
n +u2

n +u3 is tight in C([0, T ]× [0, 1]), which finishes the
proof. �

Now we are able to tackle the proof of Theorem 3.1.

Proof. Suppose that the claim of our theorem is false. Then, there exists a
constant δ > 0 such that:

inf
n
E

[
sup

(t,x)∈[0,T ]×[0,1]

|un(t, x)− u(t, x)|2
]
≥ δ.

According to Lemma 3.2, the sequence Zn = (un, u,W
H) is tight in (C([0, T ]×

[0, 1]))3. Then, by Skorokhod’s selection theorem, there exist a subsequence

{nk, k ≥ 1}, a probability space (Ω̃, F̃ , P̃ ) and stochastic processes Z̃ = (ũ, ṽ,

W̃H), Z̃nk = (ũnk , ṽnk , W̃
H
nk

) defined on (Ω̃, F̃ , P̃ ) such that:

(α) For each k ≥ 1, the laws of Z̃nk and Znk coincide;

(β) Z̃nk converges P̃–a.s in (C([0, T ]× [0, 1]))3 to Z̃.

Thanks to property (α), we have, for k ≥ 1

E

∣∣∣∣ũnk(t, x)−
∫ 1

0

G(t, x, y)unk0 (y)dy−
∫ t

0

∫ 1

0

G(t− s, x, y)b(s, y, ũnk(s, y))dyds

−
∫ t

0

∫ 1

0

G(t− s, x, y)W̃H
nk

(ds, dy)

∣∣∣∣2 = 0.

In other words ũnk(t, x) satisfies the following SPDE:

ũnk(t, x) =

∫ 1

0

G(t, x, y)unk0 (y)dy

+

∫ t

0

∫ 1

0

G(t− s, x, y)b(s, y, ũnk(s, y))dyds

+

∫ t

0

∫ 1

0

G(t− s, x, y)W̃H
nk

(ds, dy).

Similarly,

ṽnk(t, x) =

∫ 1

0

G(t, x, y)u0(y)dy



A SEMILINEAR STOCHASTIC HEAT EQUATION 641

+

∫ t

0

∫ 1

0

G(t− s, x, y)b(s, y, ṽnk(s, y))dyds

+

∫ t

0

∫ 1

0

G(t− s, x, y)W̃H
nk

(ds, dy).

Using (β) and Lemma A.2 (see Appendix), we deduce that∫ t

0

∫ 1

0

G(t− s, x, y)b(s, y, ṽnk(s, y))dyds

converges in probability (as k →∞) to∫ t

0

∫ 1

0

G(t− s, x, y)b(s, y, ṽ(s, y))dyds.

Similarly, ∫ t

0

∫ 1

0

G(t− s, x, y)b(s, y, ũnk(s, y))dyds

converges in probability (as k →∞) to∫ t

0

∫ 1

0

G(t− s, x, y)b(s, y, ũ(s, y))dyds.

Due to the fact that the sequence un0 converges to u0 uniformly, it follows from
(18) that ∫ 1

0

G(t, x, y)unk0 (y)dy →
∫ 1

0

G(t, x, y)u0(y)dy.

Hence, by the pathwise uniqueness, ũ and ṽ are indistinguishable.
On the other hand, by uniform integrability, we have that:

δ ≤ lim inf
n

E

[
sup

(t,x)∈[0,T ]×[0,1]

|un(t, x)− u(t, x)|2
]

≤ lim inf
k

Ẽ

[
sup

(t,x)∈[0,T ]×[0,1]

|ũnk(t, x)− ṽnk(t, x)|2
]

= Ẽ

[
sup

(t,x)∈[0,T ]×[0,1]

|ũ(t, x)− ṽ(t, x)|2
]
,

this contradicts our assumption. Therefore un converges to the unique solution
u. �



642 O. EL BARRIMI AND Y. OUKNINE

4. Pathwise uniqueness and Picard’s successive approximation

Let us consider the sequence of the Picard successive approximation associ-
ated to SPDE (5) defined as follows



un+1(t, x) =

∫ 1

0

G(t, x, y)u0(y)dy +

∫ t

0

∫ 1

0

G(t− s, x, y)b(s, y, un(s, y))dyds

+

∫ t

0

∫ 1

0

G(t− s, x, y)WH(ds, dy)

u0(t, x) =

∫ 1

0

G(t, x, y)u0(y)dy.

(19)

It is well known that in the theory of ordinary differential equations with con-
tinuous and bounded coefficients, the uniqueness of solution is not enough
for the convergence of the Picard successive approximation (see for instance
[21, p. 55]). The purpose of this section is to give a necessary and sufficient
conditions which ensure the convergence of the Picard successive approxima-
tion when equation (5) admits a pathwise unique solution. More precisely, we
have the following:

Theorem 4.1. Let b be a continuous bounded function. Then under pathwise
uniqueness for SPDE (5), un converges in L2(Ω; C([0, T ]× [0, 1])) to the unique
solution of (5) if and only if un+1−un converges to 0 in L2(Ω; C([0, T ]× [0, 1])).

As we did in the last section, we need first to ensure a tightness criterion.
This is the goal of the next lemma.

Lemma 4.2. Let b be a bounded function. Suppose that u0 is Hölder continuous
of order H − 1

2 < γ < 1
2 . Then, the sequence {un}n≥0 defined by (19) is tight

in C([0, T ]× [0, 1]).

Proof. The proof is similar to the proof of Lemma 3.2, the only difference is to
verify that for (t′, x′), (t, x) ∈ [0, T ] × [0, 1], there exist positive constants β1,
β2 such that ∣∣∣∣∫ 1

0

G(t′, x′, y)u0(y)dy −
∫ 1

0

G(t, x, y)u0(y)dy

∣∣∣∣m
≤ C

(
|t′ − t|2+β1 + |x′ − x|2+β2

)
.

Note that in [6], it is shown that if u0 is Hölder continuous of order γ, then,
for any m > 4

γ :∣∣∣∣∫ 1

0

G(t′, x′, y)u0(y)dy −
∫ 1

0

G(t, x, y)u0(y)dy

∣∣∣∣m ≤ C (|t′ − t| γ2 + |x′ − x|γ
)m

.

Then the result follows. �

Now we are able to complete the proof of Theorem 4.1.
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Proof. Suppose that un+1 − un converges to 0 in quadratic mean, and there is
some δ > 0 such that

inf
n
E

[
sup

(t,x)∈[0,T ]×[0,1]

|un(t, x)− u(t, x)|2
]
≥ δ.

Due to Lemma 4.2 the sequence (un, un+1, u,W
H) satisfies conditions (i) and

(ii) of Lemma 2.3. Then, by Skorokhod’s selection theorem, there exist a

subsequence {nk, k ≥ 1}, a probability space (Ω̃, F̃ , P̃ ) and stochastic processes

(ũ, ṽ, w̃, W̃H), (ũnk , ṽnk , w̃nk , W̃
H
nk

) defined on (Ω̃, F̃ , P̃ ) such that:

(α′) For each k ≥ 1, the laws of (ũnk , ṽnk , w̃nk , W̃
H
nk) and (unk , unk+1, u,

WH) coincide;

(β′) (ũnk , ṽnk , w̃nk , W̃
H
nk

) converges to (ũ, ṽ, w̃, W̃H) uniformly on every

compact subset on R+ × R P̃–a.s.

Since un+1−un converges to 0 in quadratic mean, we deduce that ũ = ṽ, P̃–a.s.
Thanks to property (α′), we have, for every k ≥ 1

ṽnk(t, x) =

∫ 1

0

G(t, x, y)u0(y)dy

+

∫ t

0

∫ 1

0

G(t− s, x, y)b(s, y, ũnk(s, y))dyds

+

∫ t

0

∫ 1

0

G(t− s, x, y)W̃H
nk

(ds, dy).

Similarly

w̃nk(t, x) =

∫ 1

0

G(t, x, y)u0(y)dy

+

∫ t

0

∫ 1

0

G(t− s, x, y)b(s, y, w̃nk(s, y))dyds

+

∫ t

0

∫ 1

0

G(t− s, x, y)W̃H
nk

(ds, dy).

On the other hand, using (β′) and Lemma A.2 (see Appendix)∫ t

0

∫ 1

0

G(t− s, x, y)b(s, y, ũnk(s, y))dyds

converges in probability (as k →∞ ) to∫ t

0

∫ 1

0

G(t− s, x, y)b(s, y, ũ(s, y))dyds.

Similarly, ∫ t

0

∫ 1

0

G(t− s, x, y)b(s, y, w̃nk(s, y))dyds
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converges in probability (as k →∞ ) to∫ t

0

∫ 1

0

G(t− s, x, y)b(s, y, w̃(s, y))dyds.

Thus, the processes ũ and w̃ satisfy the same SPDE on (Ω̃, F̃ , P̃ ) with the same

driving noise W̃H . Then, by pathwise uniqueness, we conclude that ũ and w̃
are indistinguishable.

On the other hand, by uniform integrability, we have that:

δ ≤ lim inf
n

E

[
sup

(t,x)∈[0,T ]×[0,1]

|un(t, x)− u(t, x)|2
]

≤ lim inf
k

Ẽ

[
sup

(t,x)∈[0,T ]×[0,1]

|ũnk(t, x)− w̃nk(t, x)|2
]

= Ẽ

[
sup

(t,x)∈[0,T ]×[0,1]

|ũ(t, x)− w̃(t, x)|2
]
,

which is a contradiction. Then the desired result follows. �

5. Stability under Lipschitz condition in Hölder space

Let β = (β1, β2) such that β1, β2 > 0, and denote by Cβ([0, T ] × [0, 1];R)
the set of β-Hölder continuous functions equipped with the norm

‖f‖β = sup
(t,x)∈[0,T ]×[0,1]

|f(t, x)|+ sup
s6=t∈[0,T ]

sup
x 6=y∈[0,1]

|f(t, x)− f(s, y)|
|t− s|β1 + |x− y|β2

.

Let g be a function defined on [0, T ]× [0, 1]× R. For T > 0, we set

‖g‖∞ = sup
t∈[0,T ]

sup
x∈[0,1]

sup
r∈R
|g(t, x, r)| .

It follows from [19, Lemma 1], that the solution to the equation (5) is Hölder
continuous in time, but using the same techniques as in [19, Lemma 1] and in
Lemma 3.2, we can conclude also that u belongs to Cβ([0, T ]× [0, 1];R) a.s.

Let (bn)n≥0 be a sequence of bounded functions on [0, T ]× [0, 1]× R which
satisfy Lipschitz condition uniformly in n. Denote by un(t, x) the unique solu-
tion of equation

un(t, x) =

∫ 1

0

G(t, x, y)u0(y)dy

+

∫ t

0

∫ 1

0

G(t− s, x, y)bn(s, y, un(s, y))dyds

+

∫ t

0

∫ 1

0

G(t− s, x, y)WH(ds, dy).

Then, we have the following:
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Theorem 5.1. Assume that (bn)n≥0 converges to b uniformly on [0, T ]×[0, 1]×
R. Then, for any p ≥ 2

lim
n→∞

E
(
‖un − u‖pβ

)
= 0,

where u is the unique solution of equation (5).

Before we proceed to the proof of Theorem 5.1, we now state a technical
lemma which is crucial for our target.

Lemma 5.2. Assume that there exists a real valued function b defined on
[0, T ]× [0, 1]× R such that

lim
n→∞

‖bn − b‖∞ = 0.

Then, for any p ≥ 2

lim
n→∞

sup
t∈[0,T ]

sup
x∈[0,1]

E (|un(t, x)− u(t, x)|p) = 0,

where u is the unique solution of equation (5).

Proof. For any p ≥ 2, we know that

E|un(t, x)− u(t, x)|p

= E

∣∣∣∣∫ t

0

∫ 1

0

G(t− s, x, y)(bn(s, y, un(s, y))− b(s, y, u(s, y))dyds

∣∣∣∣p
≤ CpE

∣∣∣∣∫ t

0

∫ 1

0

G(t− s, x, y)(bn(s, y, un(s, y))− b(s, y, un(s, y))dyds

∣∣∣∣p
+ CpE

∣∣∣∣∫ t

0

∫ 1

0

G(t− s, x, y)(b(s, y, un(s, y))− b(s, y, u(s, y))dyds

∣∣∣∣p .
We use Hölder inequality, Lipschitz condition on bn and Lemma 2.5, to get

sup
x∈[0,1]

E |un(t, x)− u(t, x)|p

≤ Cp ‖bn − b‖p∞ (φ(t))
p
2

+ Cp(φ(t))
p
2

∫ t

0

sup
y∈[0,1]

E |un(s, y)− u(s, y)|p ds

≤ C(p, T )

(
‖bn − b‖p∞ +

∫ t

0

sup
y∈[0,1]

E |un(s, y)− u(s, y)|p ds

)
,

where

φ(t) =

(∫ t

0

∫ 1

0

(G(t− s, x, y))2dyds

)
.

Therefore, using Gronwall’s Lemma, we deduce that

sup
t∈[0,T ]

sup
x∈[0,1]

E |un(t, x)− u(t, x)|p ≤ C(p, T ) ‖bn − b‖p∞ ,
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which proves the Lemma. �

Let us now turn to the proof of Theorem 5.1

Proof. It is enough to prove that the sequence (un − u)n≥1 satisfies the prop-
erties (1) and (2) of Lemma A.1 (see Appendix). The first property is easily
checked by using the same arguments as in Lemma 3.2. The second property
is given by Lemma 5.2. This achieves the proof. �

Appendix A

In this section we will recall some technical lemmas that have been used in
the proofs.

Lemma A.1 ([6, Lemma A1]). Let {Yn(t, x)}n≥1 be a sequence of processes
indexed by [0, T ]× [0, 1] such that

(1) For any p ≥ 2 there exist C, γ1, γ2 > 0 such that for any t1, t2 ∈ [0, T ]
and x1, x2 ∈ [0, 1]

sup
n≥1

E[|Yn(t2, x2)− Yn(t1, x1)|p] ≤ C
(
|t2 − t1|2+γ1 + |x2 − x1|2+γ2

)
;

(2) for every (t, x) ∈ [0, T ]× R and p ≥ 2

lim
n→∞

E[|Yn(t, x)|p] = 0.

Then, for any β1 ∈ (0, γ1p ) and β2 ∈ (0, γ2p )

lim
n→∞

E[‖Yn(t, x)‖pβ ] = 0.

Lemma A.2 ([15, Lemma 4.3]). For every integer n ≥ 0, let zn = {zn(t, x) :
t ∈ [0, T ], x ∈ [0, 1]} be a continuous adapted random field. Assume that for
every ε > 0 and T > 0

lim
n→∞

P

[
sup
t∈[0,T ]

sup
x∈[0,1]

|zn(t, x)− z(t, x)| ≥ ε

]
= 0.

Let h(t, x, r) be a continuous bounded function of (t, x, r) ∈ [0, T ] × [0, 1] × R.
Then ∫ t

0

∫ 1

0

h(s, y, zn(s, y))dyds→
∫ t

0

∫ 1

0

h(s, y, z(s, y))dyds

in probability for every t ∈ [0, T ] and x ∈ [0, 1].
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[1] E. Alòs and D. Nualart, Stochastic integration with respect to the fractional Brownian

motion, Stoch. Stoch. Rep. 75 (2003), no. 3, 129–152.

[2] K. Bahlali, M. Eddahbi, and M. Mellouk, Stability and genericity for spde’s driven by
spatially correlated noise, J. Math. Kyoto Univ. 48 (2008), no. 4, 699–724.

[3] K. Bahlali, B. Mezerdi, and Y. Ouknine, Pathwise uniqueness and approximation of

solutions of stochastic differential equations, in Séminaire de Probabilités, XXXII, 166–
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