• 제목/요약/키워드: Heat shock protein genes

검색결과 139건 처리시간 0.024초

Putative response regulator two-component gene, CaSKN7, regulate differentiation and virulence in Candida albicans

  • Lee, Jung-Shin;Minyoung Lim;Yim, Hyung-Soon;Kang, Sa-Ouk
    • 한국생물물리학회:학술대회논문집
    • /
    • 한국생물물리학회 2003년도 정기총회 및 학술발표회
    • /
    • pp.50-50
    • /
    • 2003
  • We have identified and analysed a putative response regulator two-component gene (CaSKN7) from Candida albicans and its encoding protein (CaSkn7). CaSKN7 has an open reading frame of 1677bp. CaSKN7 encodes a 559 amino acid protein (CaSkn7) with an estimated molecular mass of 61.1 kDa. CaSKN7 is a homologue of a Saccharomyces cerevisiae SKN7 that is the regulator involved in the oxidative stress response. To study the role of CaSKN7, we constructed a CAI4-derived mutant strain carrying a homozygous deletion of the CaSKN7 gene. In the caskn7 disruptant cells, the formation of germ tube require shorter time than that in the congenic wild-type strain but the growth of mycelium delayed in liquid media. In contrast, the caskn7 disruptant cells attenuate the differentiation in solid media and the virulence in mouse model system. Expression level of hypha-specific and virulence genes - HYR1, ECE1, HWP1, and ALS1 - in the caskn7 disruptant cells increased as compared with that in the congenic wild-type strain in 10% serum YPD. Skn7 in 5. cerevisiae was found to bind the HSE element from the SSA promoter, Also, CaSkn7 contains heat shock factor DNA-binding domain and the promoters of these genes have HSE-like sties. Therefore these results show that CaSKN7 regulate the differentiation and virulence of C. albicans.

  • PDF

Oral Administration of Mice with Cell Extracts of Recombinant Lactococcus lactis IL1403 Expressing Mouse Receptor Activator of NF-kB Ligand (RANKL)

  • Xuan, Biao;Park, Jongbin;Lee, Geun-Shik;Kim, Eun Bae
    • 한국축산식품학회지
    • /
    • 제42권6호
    • /
    • pp.1061-1073
    • /
    • 2022
  • Receptor activator of NF-kB ligand (RANKL) is known to play a major role in bone metabolism and the immune system, and its recombinant form has been expressed in bacterial systems for research since the last two decades. However, most of these recombinant forms are used after purification or directly using living cells. Here, there were cell extracts of recombinant Lactococcus lactis expressing mouse RANKL (mRANKL) used to evaluate its biological activity in mice. Mice were divided into three groups that were fed phosphate-buffered saline (PBS), wild-type L. lactis IL1403 (WT_CE), and recombinant L. lactis expressing mRANKL (mRANKL_CE). The small intestinal transcriptome and fecal microbiome were then profiled. The biological activity of mRANKL_CE was confirmed by studying RANK-RANKL signaling in vitro and in vivo. For small intestinal transcriptome, differentially expressed genes (DEGs) were identified in the mRANKL_CE group, and no DEGs were found in the WT_CE group. In the PBS vs. mRANKL_CE gene enrichment analysis, upregulated genes were enriched for heat shock protein binding, regulation of bone resorption, and calcium ion binding. In the gut microbiome analysis, there were no critical changes among the three groups. However, Lactobacillus and Sphingomonas were more abundant in the mRANKL_CE group than in the other two groups. Our results indicate that cell extracts of mRANKL_CE can play an effective role without a significant impact on the intestine. This strategy may be useful for the development of protein drugs.

Let-7c miRNA Inhibits the Proliferation and Migration of Heat-Denatured Dermal Fibroblasts Through Down-Regulating HSP70

  • Jiang, Tao;Wang, Xingang;Wu, Weiwei;Zhang, Fan;Wu, Shifeng
    • Molecules and Cells
    • /
    • 제39권4호
    • /
    • pp.345-351
    • /
    • 2016
  • Wound healing is a complex physiological process necessitating the coordinated action of various cell types, signals and microRNAs (miRNAs). However, little is known regarding the role of miRNAs in mediating this process. In the present study, we show that let-7c miRNA is decreased in heat-denatured fibroblasts and that inhibiting let-7c expression leads to the increased proliferation and migration of dermal fibroblasts, whereas the overexpression of let-7c exerts an opposite effect. Further investigation has identified heat shock protein 70 as a direct target of let-7c and has demonstrated that the expression of HSP70 in fibroblasts is negatively correlated with let-7c levels. Moreover, down-regulation of let-7c expression is accompanied by up-regulation of Bcl-2 expression and down-regulation of Bax expression, both of which are the downstream genes of HSP70. Notably, the knockdown of HSP70 by HSP70 siRNA apparently abrogates the stimulatory effect of let-7c inhibitor on heat-denatured fibroblasts proliferation and migration. Overall, we have identified let-7c as a key regulator that inhibits fibroblasts proliferation and migration during wound healing.

Caffeine attenuates spermatogenic disorders in mice with induced chronic scrotal hyperthermia

  • Amir Raoofi;Omid Gholami;Hossein Mokhtari;Fatemeh Bagheri;Auob Rustamzadeh;Davood Nasiry;Alireza Ghaemi
    • Clinical and Experimental Reproductive Medicine
    • /
    • 제51권1호
    • /
    • pp.28-41
    • /
    • 2024
  • Objective: Chronic scrotal hyperthermia (SHT) can lead to serious disorders of the male reproductive system, with oxidative stress playing a key role in the onset of these dysfunctions. Thus, we evaluated the impact of caffeine, a potent antioxidant, on cellular and tissue disorders in mice with chronic SHT. Methods: In this experimental study, 56 adult male NMRI mice were allocated into seven equal groups. Apart from the non-treated control group, all were exposed to heat stress. Two groups, termed "preventive" and "curative," were orally administered caffeine. The preventive mice began receiving caffeine immediately prior to heat exposure, while for the curative group, a caffeine regimen was initiated 15 consecutive days following cessation of heat exposure. Each treated group was subdivided based on pairing with a positive control (Pre/ curative [Cur]+PC) or a vehicle (Pre/Cur+vehicle). Upon conclusion of the study, we assessed sperm characteristics, testosterone levels, stereological parameters, apoptosis, antioxidant and oxidant levels, and molecular markers. Results: Sperm parameters, testosterone levels, stereological parameters, biochemical factors (excluding malondialdehyde [MDA]), and c-kit gene expression were significantly elevated in the preventive and curative groups, especially the former, relative to the other groups. Conversely, expression levels of the heat shock protein 72 (HSP72) and nuclear factor kappa beta (NF-κβ) genes, MDA levels, and apoptotic cell density were markedly lower in both caffeine-treated groups relative to the other groups, with more pronounced differences observed in the preventive group. Conclusion: Overall, caffeine attenuated cellular and molecular abnormalities induced by heat stress in the testis, particularly in the mice treated under the preventive condition.

Differential Protein Expressions in Virus-Infected and Uninfected Trichomonas vaginalis

  • Ding, He;Gong, Pengtao;Yang, Ju;Li, Jianhua;Li, He;Zhang, Guocai;Zhang, Xichen
    • Parasites, Hosts and Diseases
    • /
    • 제55권2호
    • /
    • pp.121-128
    • /
    • 2017
  • Protozoan viruses may influence the function and pathogenicity of the protozoa. Trichomonas vaginalis is a parasitic protozoan that could contain a double stranded RNA (dsRNA) virus, T. vaginalis virus (TVV). However, there are few reports on the properties of the virus. To further determine variations in protein expression of T. vaginalis, we detected 2 strains of T. vaginalis; the virus-infected ($V^+$) and uninfected ($V^-$) isolates to examine differentially expressed proteins upon TVV infection. Using a stable isotope N-terminal labeling strategy (iTRAQ) on soluble fractions to analyze proteomes, we identified 293 proteins, of which 50 were altered in $V^+$ compared with $V^-$ isolates. The results showed that the expression of 29 proteins was increased, and 21 proteins decreased in $V^+$ isolates. These differentially expressed proteins can be classified into 4 categories: ribosomal proteins, metabolic enzymes, heat shock proteins, and putative uncharacterized proteins. Quantitative PCR was used to detect 4 metabolic processes proteins: glycogen phosphorylase, malate dehydrogenase, triosephosphate isomerase, and glucose-6-phosphate isomerase, which were differentially expressed in $V^+$ and $V^-$ isolates. Our findings suggest that mRNA levels of these genes were consistent with protein expression levels. This study was the first which analyzed protein expression variations upon TVV infection. These observations will provide a basis for future studies concerning the possible roles of these proteins in host-parasite interactions.

Search for Novel Stress-responsive Protein Components Using a Yeast Mutant Lacking Two Cytosolic Hsp70 Genes, SSA1 and SSA2

  • Matsumoto, Rena;Rakwal, Randeep;Agrawal, Ganesh Kumar;Jung, Young-Ho;Jwa, Nam-Soo;Yonekura, Masami;Iwahashi, Hitoshi;Akama, Kuniko
    • Molecules and Cells
    • /
    • 제21권3호
    • /
    • pp.381-388
    • /
    • 2006
  • Heat shock proteins (Hsp) 70 are a ubiquitous family of molecular chaperones involved in many cellular processes. A yeast strain, ssa1/2, with two functionally redundant cytosolic Hsp70s (SSA1 and SSA2) deleted shows thermotolerance comparable to mildly heatshocked wild type yeast, as well as increased protein synthesis and ubiquitin-proteasome protein degradation. Since mRNA abundance does not always correlate well with protein expression levels it is essential to study proteins directly. We used a gel-based approach to identify stress-responsive proteins in the ssa1/2 mutant and identified 43 differentially expressed spots. These were trypsin-digested and analyzed by nano electrospray ionization liquid chromatography tandem mass spectrometry (nESI-LC-MS/MS). A total of 22 non-redundant proteins were identified, 11 of which were confirmed by N-terminal sequencing. Nine proteins, most of which were up-regulated (2-fold or more) in the ssa1/2 mutant, proved to be stress-inducible proteins such as molecular chaperones and anti-oxidant proteins, or proteins related to carbohydrate metabolism. Interestingly, a translational factor Hyp2p up-regulated in the mutant was also found to be highly phosphorylated. These results indicate that the cytosolic Hsp70s, Ssa1p and Ssa2p, regulate an abundance of proteins mainly involved in stress responses and protein synthesis.

누에 수정란 초기발현유전자 데이터베이스 구축 (Gene expression profile of the early embryonic gene of the silkworm, Bombyx mori)

  • 최광호;구태원;김성렬;김성완;전재범;박승원;강석우
    • 한국잠사곤충학회지
    • /
    • 제51권2호
    • /
    • pp.191-196
    • /
    • 2013
  • 본 연구는 누에 수정란 초기에 발현하는 유전자를 대량 선발하고, 유용 유전자의 프로모터를 개발하기 위한 연구의 일환으로 추진하였다. 산란 후 2 ~ 16시간이 경과한 누에알로부터 cDNA 유전자은행을 제작하였다. 제작된 cDNA 유전자은행으로 전체 960개 클론을 무작위 추출하여 부분 염기서열 분석을 통해 EST를 제작하였다. 분석된 652개 ESTs 중 염기서열 상동성 분석을 통해 156개의 기존 알려진 유전자와 178개의 미지의 유전자로 구성된 334개 독립유전자를 최종 선발하여 'eegEST'로 명명하였다. eegEST 분석 결과, 기존 염기서열 정보가 알려진 156개 독립유전자 중 2회 이상 출현한 유전자 수는 143개로 전체의 34%를 차지하였으며, Hsp20.8 유전자(12회)와 ubiqutin-like 유전자(11회)가 가장 높은 출현 빈도를 나타내었다. 또한 eegEST 독립유전자의 추정 기능에 따른 분류에서 곤충 수정란 발생초기에 확인할 수 있는 기관 형성과 관련한 유전자가 전체 24%를 차지하고 있었다. 본 연구에서 작성된 누에 수정란 초기 발현유전자 데이터베이스(eegEST)는 곤충 발생학 연구를 위한 정보제공 뿐 아니라 형질전환누에 제작을 위한 프로모터 개발 연구에 활용될 수 있을 것으로 기대한다.

Effects of hypoxia on the concentration of circulating miR-210 in serum and the expression of HIF-1α and HSP90α in tissues of olive flounder (Paralichthys olivaceus)

  • Abdellaoui, Najib;Kwak, Jun Soung;Kim, Ki Hong
    • 한국어병학회지
    • /
    • 제33권1호
    • /
    • pp.35-43
    • /
    • 2020
  • Hypoxia is a serious problem in the marine ecosystem causing a decline in aquatic resources. MicroRNAs (miRNAs) regulate the expression of genes through binding to the corresponding sequences of their target mRNAs. Especially, miRNAs in the cytoplasm can be secreted into body fluids, which called circulating miRNAs, and the availability of circulating miRNAs as biomarkers for hypoxia has been demonstrated in mammals. However, there has been no report on the hypoxia-mediated changes in the circulating miRNAs in fish. miR-210 is known as the representative hypoxia-responsive circulating miRNA in mammals. To know whether fish miR-210 also respond to hypoxia, we analyzed the change of circulating miR-210 quantity in the serum of olive flounder (Paralichthys olivaceus) in response to hypoxia. The expression of hypoxia related genes, hypoxia inducible factor 1α (HIF-1α) and the heat shock protein 90α (HSP90α) was also analyzed. Similar to the reports from mammals, miR-210-5p and miR-210-3p were significantly increased in the serum of olive flounder in response to hypoxia, suggesting that circulating miR-210 levels in the serum can be used as a noninvasive prognostic biomarker for fish suffered hypoxia. The target genes of miR-210 were related to various biological processes, which explains the major regulatory role of miR-210 in response to hypoxia. The expression of HIF-1α and HSP90α in the tissues was also up-regulated by hypoxia. Considering the critical role of HIF-1α in miR-210 expression and HSP90 in miRNAs function, the present up-regulation of HIF-1α and HSP90α might be related to the increase of circulatory miR-210, and the interaction mechanism among HIF-1α, HSP90α, and hypoxia-responsive microRNAs in fish should be further studied.

The Efficiency of RNA Interference in Bursaphelenchus xylophilus

  • Park, Jung-Eun;Lee, Kyong Yun;Lee, Se-Jin;Oh, Wan-Suk;Jeong, Pan-Young;Woo, Taeha;Kim, Chang-Bae;Paik, Young-Ki;Koo, Hyeon-Sook
    • Molecules and Cells
    • /
    • 제26권1호
    • /
    • pp.81-86
    • /
    • 2008
  • RNA interference (RNAi) was performed on several essential genes in the pinewood nematode Bursaphelenchus xylophilus, which causes pine wilt disease. Double-stranded RNA (dsRNA) was delivered to larvae or adult worms by soaking, electroporation, or microinjection. Soaking and electroporation of L2-L3 stage worms in solutions containing dsRNA for essential genes induced over 25% lethality after 5 days, and gene-specific phenotypes were observed. This lethality agreed with significant reductions of the targeted transcripts, as assayed by reverse-transcription coupled with real time PCR. Microinjection was the most efficient route as measured by the hatching rate of F1 embryos, which was reduced by 46%. When adult worms were soaked in dsRNA, lethality was induced in the F1 larvae, revealing the persistence of knockdown phenotypes. The penetrance of the RNAi phenotypes for essential genes was relatively low but consistent, indicating that RNAi should be useful for studying the in vivo functions of B. xylophilus gene products.

Transduction of Familial Amyotrophic Lateral Sclerosis-related Mutant PEP-1-SOD Proteins into Neuronal Cells

  • An, Jae Jin;Lee, Yeom Pyo;Kim, So Young;Lee, Sun Hwa;Kim, Dae Won;Lee, Min Jung;Jeong, Min Seop;Jang, Sang Ho;Kang, Jung Hoon;Kwon, Hyeok Yil;Kang, Tae-Cheon;Won, Moo Ho;Cho, Sung-Woo;Kwon, Oh-Shin;Lee, Kil Soo;Park, Jinseu;Eum, Won Sik;Choi, Soo Young
    • Molecules and Cells
    • /
    • 제25권1호
    • /
    • pp.55-63
    • /
    • 2008
  • Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disorder characterized by the selective death of motor neurons. Mutations in the SOD1 gene are responsible for a familial form of ALS (FALS). Although many studies suggest that mutant SOD1 proteins are cytotoxic, the mechanism is not fully understood. To investigate the role of mutant SOD1 in FALS, human SOD1 genes were fused with a PEP-1 peptide in a bacterial expression vector to produce in-frame PEP-1-SOD fusion proteins (wild type and mutants). The expressed and purified PEP-1-SOD fusion proteins were efficiently transduced into neuronal cells. Neurones harboring the A4V, G93A, G85R, and D90A mutants of PEP-1-SOD were more vulnerable to oxidative stress induced by paraquat than those harboring wild-type proteins. Moreover, neurones harboring the mutant SOD proteins had lower heat shock protein (Hsp) expression levels than those harboring wild-type SOD. The effects of the transduced SOD1 fusion proteins may provide an explanation for the association of SOD1 with FALS, and Hsps could be candidate agents for the treatment of ALS.