Browse > Article

Search for Novel Stress-responsive Protein Components Using a Yeast Mutant Lacking Two Cytosolic Hsp70 Genes, SSA1 and SSA2  

Matsumoto, Rena (Graduate School of Science and Technology, Chiba University)
Rakwal, Randeep (Human Stress Signal Research Center (HSS), AIST)
Agrawal, Ganesh Kumar (Research Laboratory for Agricultural Biotechnology and Biochemistry (RLABB))
Jung, Young-Ho (Department of Molecular Biology, College of Natural Science, Sejong University)
Jwa, Nam-Soo (Department of Molecular Biology, College of Natural Science, Sejong University)
Yonekura, Masami (Food Function Laboratory, School of Agriculture, Ibaraki University)
Iwahashi, Hitoshi (Human Stress Signal Research Center (HSS), AIST)
Akama, Kuniko (Graduate School of Science and Technology, Chiba University)
Abstract
Heat shock proteins (Hsp) 70 are a ubiquitous family of molecular chaperones involved in many cellular processes. A yeast strain, ssa1/2, with two functionally redundant cytosolic Hsp70s (SSA1 and SSA2) deleted shows thermotolerance comparable to mildly heatshocked wild type yeast, as well as increased protein synthesis and ubiquitin-proteasome protein degradation. Since mRNA abundance does not always correlate well with protein expression levels it is essential to study proteins directly. We used a gel-based approach to identify stress-responsive proteins in the ssa1/2 mutant and identified 43 differentially expressed spots. These were trypsin-digested and analyzed by nano electrospray ionization liquid chromatography tandem mass spectrometry (nESI-LC-MS/MS). A total of 22 non-redundant proteins were identified, 11 of which were confirmed by N-terminal sequencing. Nine proteins, most of which were up-regulated (2-fold or more) in the ssa1/2 mutant, proved to be stress-inducible proteins such as molecular chaperones and anti-oxidant proteins, or proteins related to carbohydrate metabolism. Interestingly, a translational factor Hyp2p up-regulated in the mutant was also found to be highly phosphorylated. These results indicate that the cytosolic Hsp70s, Ssa1p and Ssa2p, regulate an abundance of proteins mainly involved in stress responses and protein synthesis.
Keywords
Cytosolic Hsp70; Edman Sequence; Gel-based Proteome; Hyp2p; Tandem Mass Spectrometry; Yeast;
Citations & Related Records

Times Cited By Web Of Science : 5  (Related Records In Web of Science)
연도 인용수 순위
  • Reference
1 Agrawal, G. K. and Rakwal, R. (2006) Rice proteomics: a cornerstone for cereal food crop proteomes. Mass Spectrom Rev. 25, 1−53   DOI   ScienceOn
2 Benne, R., Brown-Luedi, M. L., and Hershey, J. W. (1978) Purification and characterization of protein synthesis initiation factors eIF-1, eIF-4C, eIF-4D, and eIF-5 from rabbit reticulocytes. J. Biol. Chem. 253, 3070−3077
3 Bermingham-McDonogh, O., Gralla, E. B., and Valentine, J. S. (1988) The copper, zinc-superoxide dismutase gene of Saccharomyces cerevisiae: cloning, sequencing, and biological activity. Proc. Natl. Acad. Sci. USA 85, 4789−4793   DOI   ScienceOn
4 Bradford, M. M. (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248−254   DOI   ScienceOn
5 Celis, J. E. and Gromov, P. (1999) 2D protein electrophoresis: can it be perfected- Curr. Opin. Biotechnol. 10, 16−21. Craig, E. A. (1985) The heat shock response. CRC Crit. Rev. Biochem. 18, 239-280   DOI
6 Futcher, B., Latter, G. I., Monardo, P., McLaughlin, C. S., and Garrels, J. I. (1999) A sampling of the yeast proteome. Mol. Cell. Biol. 19, 7357-7368
7 Haslbeck, M., Miess, A., Stromer, T., Walter, S., and Buchner, J. (2005) Disassembling protein aggregates in the yeast cytosol. The cooperation of Hsp26 with Ssa1 and Hsp104. J. Biol. Chem. 280, 23861−23868   DOI   ScienceOn
8 Kang, H. A. and Hershey, J. W. (1994) Effect of initiation factor eIF-5A depletion on protein synthesis and proliferation of Saccharomyces cerevisiae. J. Biol. Chem. 269, 3934−3940
9 Kang, H. A., Schwelberger, H. G., and Hershey, J. W. (1992) The two genes encoding protein synthesis initiation factor eIF-5A in Saccharomyces cerevisiae are members of a duplicated gene cluster. Mol. Gen. Genet. 233, 487−490
10 Kim, S., Schilke, B., Craig, E. A., and Horwich, A. L. (1998) Folding in vivo of a newly translated yeast cytosolic enzyme is mediated by the SSA class of cytosolic yeast Hsp70 proteins. Proc. Natl. Acad. Sci. USA 95, 12860-12865   DOI   ScienceOn
11 Matsumoto, R., Akama, K., Rakwal, R., and Iwahashi, H. (2005) The stress response against denatured proteins in the deletion of cytosolic chaperones SSA1/2 is different from heat-shock response in Saccharomyces cerevisiae. BMC Genomics 6, 141   DOI   ScienceOn
12 McAlister, L. and Holland, M. J. (1982) Targeted deletion of a yeast enolase structural gene. Identification and isolation of yeast enolase isozymes. J. Biol. Chem. 257, 7181-7188
13 Meriin, A. B., Zhang, X., He, X., Newnam, G. P., Chernoff, Y. O., et al. (2002) Huntington toxicity in yeast model depends on polyglutamine aggregation mediated by a prion-like pro tein Rnq1. J. Cell Biol. 157, 997−1004   DOI   ScienceOn
14 Patton, W. F. (2002) Detection technologies in proteome analysis. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 771, 3−31
15 Rakwal, R. A., Kubo, A., Yonekura, M., Tamogami, S., Saji, H., et al. (2003) Defense/stress responses elicited in rice seedlings exposed to the gaseous air pollutant sulfur dioxide. Environ. Exp. Bot. 49, 223−235   DOI   ScienceOn
16 Washburn, M. P., Wolters, D., and Yates, J. R., 3rd (2001) Large-scale analysis of the yeast proteome by multidimensional protein identification technology. Nat. Biotechnol. 19, 242−247   DOI   ScienceOn
17 Satyanarayana, C., Schroder-Kohne, S., Craig, E. A., Schu, P. V., and Horst, M. (2000) Cytosolic Hsp70s are involved in the transport of aminopeptidase 1 from the cytoplasm into the vacuole. FEBS Lett. 470, 232−238   DOI   ScienceOn
18 Nicolet, C. M. and Craig, E. A. (1989) Isolation and characterization of STI1, a stress-inducible gene from Saccharomyces cerevisiae. Mol. Cell. Biol. 9, 3638−3646
19 Nelson, R. J., Heschl, M. F., and Craig, E. A. (1992) Isolation and characterization of extragenic suppressors of mutations in the SSA hsp70 genes of Saccharomyces cerevisiae. Genetics 131, 277−285
20 Agrawal, G. K. and Thelen, J. J. (2005) Development of a simplified, economical polyacrylamide gel staining protocol for phosphoproteins. Proteomics 5, 4684−4688   DOI   ScienceOn
21 Oka, M., Kimata, Y., Mori, K., and Kohno, K. (1997) Saccharomyces cerevisiae KAR2 (BiP) gene expression is induced by loss of cytosolic HSP70/Ssa1p through a heat shock elementmediated pathway. J. Biochem. (Tokyo) 121, 578−584   DOI   ScienceOn
22 Shulga, N., James, P., Craig, E. A., and Goldfarb, D. S. (1999) A nuclear export signal prevents Saccharomyces cerevisiae Hsp70 Ssb1p from stimulating nuclear localization signaldirected nuclear transport. J. Biol. Chem. 274, 16501-16507   DOI
23 Becker, J., Walter, W., Yan, W., and Craig, E. A. (1996) Functional interaction of cytosolic hsp70 and a DnaJ-related protein, Ydj1p, in protein translocation in vivo. Mol. Cell. Biol. 16, 4378−4386
24 Hajduch, M., Ganapathy, A., Stein, J. W., and Thelen, J. J. (2005) A systematic proteomic study of seed filling in soybean. Establishment of high-resolution two-dimensional reference maps, expression profiles, and an interactive proteome database. Plant Physiol. 137, 1397−1419   DOI   ScienceOn
25 Ziegelhoffer, T., Lopez-Buesa, P., and Craig, E. A. (1995) The dissociation of ATP from hsp70 of Saccharomyces cerevisiae is stimulated by both Ydj1p and peptide substrates. J. Biol. Chem. 270, 10412−10419   DOI   ScienceOn
26 Beyer, A., Hollunder, J., Nasheuer, H. P., and Wilhelm, T. (2004) Post-transcriptional expression regulation in the yeast Saccharomyces cerevisiae on a genomic scale. Mol. Cell. Proteomics 3, 1083−1092   DOI   ScienceOn
27 Geymonat, M., Wang, L., Garreau, H., and Jacquet, M. (1998) Ssa1p chaperone interacts with the guanine nucleotide exchange factor of ras Cdc25p and controls the cAMP pathway in Saccharomyces cerevisiae. Mol. Microbiol. 30, 855-864   DOI   ScienceOn
28 McAlister, L. and Holland, M. J. (1985) Isolation and characterization of yeast strains carrying mutations in the glyceraldehyde- 3-phosphate dehydrogenase genes. J. Biol. Chem. 260, 15013−15018
29 Gygi, S. P., Rochon, Y., Franza, B. R., and Aebersold, R. (1999) Correlation between protein and mRNA abundance in yeast. Mol. Cell. Biol. 19, 1720-1730
30 Kemper, W. M., Berry, K. W., and Merrick, W. C. (1976) Purification and properties of rabbit reticulocyte protein synthesis initiation factors M2Balpha and M2Bbeta. J. Biol. Chem. 251, 5551-5557
31 Sasaki, K., Abid, M. R., and Miyazaki, M. (1996) Deoxyhypusine synthase gene is essential for cell viability in the yeast Saccharomyces cerevisiae. FEBS Lett. 384, 151−154   DOI   ScienceOn
32 Wegele, H., Haslbeck, M., Reinstein, J., and Buchner, J. (2003) Sti1 is a novel activator of the Ssa proteins. J. Biol. Chem. 278, 25970−25976   DOI   ScienceOn
33 Wohl, T., Baur, M., Friedl, A. A., and Lottspeich, F. (1992) Chromosomal localization of the HYP2-gene in Saccharomyces cerevisiae and use of pulsed-field gel electrophoresis for detection of irregular recombination events in gene disruption experiments. Electrophoresis 13, 651−653   DOI   ScienceOn
34 Schnier, J., Schwelberger, H. G., Smit-McBride, Z., Kang, H. A., and Hershey, J. W. (1991) Translation initiation factor 5A and its hypusine modification are essential for cell viability in the yeast Saccharomyces cerevisiae. Mol. Cell. Biol. 11, 3105−3114
35 Bush, G. L. and Meyer, D. I. (1996) The refolding activity of the yeast heat shock proteins Ssa1 and Ssa2 defines their role in protein translocation. J. Cell Biol. 135, 1229-1237   DOI   ScienceOn
36 Lindquist, S. (1986) The heat-shock response. Annu. Rev. Biochem. 55, 1151−1191   DOI   ScienceOn
37 Craig, E. A. and Jacobsen, K. (1984) Mutations of the heat inducible 70 kilodalton genes of yeast confer temperature sensitive growth. Cell 38, 841-849   DOI   ScienceOn
38 Link, A. J., Eng, J., Schieltz, D. M., Carmack, E., Mize, G. J., et al. (1999) Direct analysis of protein complexes using mass spectrometry. Nat. Biotechnol. 17, 676-682   DOI   ScienceOn
39 Zuk, D. and Jacobson, A. (1998) A single amino acid substitution in yeast eIF-5A results in mRNA stabilization. EMBO J. 17, 2914−2925   DOI   ScienceOn
40 Krobitsch, S. and Lindquist, S. (2000) Aggregation of huntingtin in yeast varies with the length of the polyglutamine expansion and the expression of chaperone proteins. Proc. Natl. Acad. Sci. USA 97, 1589-1594   DOI   ScienceOn
41 Washburn, M. P., Koller, A., Oshiro, G., Ulaszek, R. R., Plouffe, D., et al. (2003) Protein pathway and complex clustering of correlated mRNA and protein expression analyses in Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 100, 3107−3112   DOI   ScienceOn
42 Steinberg, T. H., Agnew, B. J., Gee, K. R., Leung, W. Y., Goodman, T., et al. (2003) Global quantitative phosphoprotein analysis using Multiplexed Proteomics technology. Proteomics 3, 1128−1144   DOI   ScienceOn
43 Lipowsky, G., Bischoff, F. R., Schwarzmaier, P., Kraft, R., Kostka, S., et al. (2000) Exportin 4: a mediator of a novel nuclear export pathway in higher eukaryotes. EMBO J. 19, 4362-4371   DOI   ScienceOn
44 Wohl, T., Klier, H., Ammer, H., Lottspeich, F., and Magdolen, V. (1993) The HYP2 gene of Saccharomyces cerevisiae is essential for aerobic growth: characterization of different isoforms of the hypusine-containing protein Hyp2p and analysis of gene disruption mutants. Mol. Gen. Genet. 241, 305−311
45 Herbert, B. R., Harry, J. L., Packer, N. H., Gooley, A. A., Pedersen, S. K., et al. (2001) What place for polyacrylamide in proteomics- Trends Biotechnol. 19, S3−9
46 Agrawal, G. K., Rakwal, R., Yonekura, M., Kubo, A., and Saji, H. (2002) Proteome analysis of differentially displayed proteins as a tool for investigating ozone stress in rice (Oryza sativa L.) seedlings. Proteomics 2, 947-959   DOI   ScienceOn
47 Brown, C. R., McCann, J. A., and Chiang, H. L. (2000) The heat shock protein Ssa2p is required for import of fructose-1, 6- bisphosphatase into Vid vesicles. J. Cell Biol. 150, 65−76   DOI   ScienceOn
48 Halladay, J. T. and Craig, E. A. (1995) A heat shock transcription factor with reduced activity suppresses a yeast HSP70 mutant. Mol. Cell. Biol. 15, 4890-4897
49 Kang, H. A., Schwelberger, H. G., and Hershey, J. W. (1993) Translation initiation factor eIF-5A, the hypusine-containing protein, is phosphorylated on serine in Saccharomyces cerevisiae. J. Biol. Chem. 268, 14750−14756
50 Valentini, S. R., Casolari, J. M., Oliveira, C. C., Silver, P. A., and McBride, A. E. (2002) Genetic interactions of yeast eukaryotic translation initiation factor 5A (eIF5A) reveal connections to poly(A)-binding protein and protein kinase C signaling. Genetics 160, 393−405
51 Cashikar, A. G., Duennwald, M., and Lindquist, S. L. (2005) A chaperone pathway in protein disaggregation. Hsp26 alters the nature of protein aggregates to facilitate reactivation by Hsp104. J. Biol. Chem. 280, 23869−23875   DOI   ScienceOn
52 Glover, J. R. and Lindquist, S. (1998) Hsp104, Hsp70, and Hsp40: a novel chaperone system that rescues previously aggregated proteins. Cell 94, 73−82
53 Craig, E. A. (1985) The heat shock response. CRC Crit. Rev. Biochem. 18, 239-280   DOI