• Title/Summary/Keyword: Heat release ratio

Search Result 189, Processing Time 0.028 seconds

Effects of Partial Premixing on Flame Structure and NOx Emission Characteristics in an Unstable Gas Turbine Combustor (불안정 가스 터빈 연소기에서 부분 예혼합이 화염구조와 NOx 배출 특성에 미치는 영향)

  • Lee Jae-Ho;Lee Jong-Ho;Kim See-Hyun;Chang Young-June;Jeon Chung-Hwan
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.437-444
    • /
    • 2005
  • Experiments were carried out in an atmospheric pressure, lab-scale gas turbine combustor to see the effect of partial premixing on unstable flame structure and Nox emission characteristics. The swirl angle is 45 deg., fuel-air mixing degrees were varied 0, 50 and 100% respectively at equivalence ratio ranging from 0.53 to 0.79. The evolution of phased-locked OH chemiluminescence images were acquired with an ICCD. NOx emission characteristics were also investigated at each experimental condition. The effect of the fuel-air mixing degree on the flame structure was obtained from phase-locked $OH^*$ images. And it was obtained from local heat release characteristics that the information about the region which the combustion instability was amplified or damped. It also could be confirmed that $\sigma$ has greatly influence on NOx emission characteristics at lean regimes. It would be expected that it could provide invaluable data for understanding the mechanism of combustion instability.

  • PDF

An Experimental Study on the Performance and Emission Characteristics with Hydrogen Enrichment in a CNG Engine (수소첨가 CNG기관의 성능 및 배출가스 특성에 관한 실험적 연구)

  • Ryu, Kyuhyun;Kim, Ingu
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.26 no.2
    • /
    • pp.164-169
    • /
    • 2015
  • Recent research has focused on alternative fuel to improve engine performance and to comply with emission regulation. Finding an alternative fuel and reducing environment pollution are the main goals for future internal combustion engines. The purpose of this study is to obtain low-emission and high-efficiency by hydrogen enriched CNG fuel in SI engine and is to clarify the effects of hydrogen enrichment in CNG fuelled engine on exhaust emission and performance. An experimental study was carried out to obtain fundamental data for performance and emission characteristics of hydrogen enrichment in SI engine. The experiment was conducted at 2500 rpm, bmep 2 bar, 4 bar conditions while CNG fuel was mixed with 10, 20 and 30% hydrogen blends. From the experimental results, combustion duration was shortened due to rapid flame propagation velocity of hydrogen and these were attributed to the burning velocity increasing exponentially with increasing hydrogen blending ratio. Hydrogen has much wider flammable limit than methane, gasoline and the minimum ignition energy is about an order of magnitude lower than for other combustion. By adding hydrogen, $CO_2$ and HC were reduced. However, $NO_X$ was increased dut to high rate of heat release for hydrogen substitutions.

Limit Cycle Amplitude Prediction Using Results of Flame Describing Function Modeling (화염묘사함수 모델링 결과를 이용한 한계 진폭 예측)

  • Kim, Jihwan;Kim, Jinah;Kim, Daesik
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.20 no.6
    • /
    • pp.46-53
    • /
    • 2016
  • It is required to predict a limit cycle amplitude controlled by system's nonlinear behavior as well as an eigen-frequency and initial growth rate of instabilities under the linear motions, in order to fully understand combustion instabilities in a lean premixed gas turbine combustor. Special focus of the current work is placed on the limit cycle amplitude prediction using flame describing function(FDF) where the ratio of a heat release fluctuation to a given flow perturbation is expressed as a function of frequency and amplitude. In this study, the CFD modeling work based on RANS is carried out to obtain FDF, which makes that the nonlinear thermo-acoustic model is successfully developed for predicting the limit cycle amplitude of the combustion instability.

A Study on Stratified Charge GDI Engine Development - Combustion Analysis according to the Variations of Injection Pressure and Load - (연소실 직접분사식 성층급기 가솔린기관 개발에 관한 연구 - 연료분사압력과 부하변동에 따른 연소특성 해석 -)

  • Lee, Sang Man;Jeong, Young Sik;Chae, Jae Ou
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.22 no.9
    • /
    • pp.1317-1324
    • /
    • 1998
  • In general, DI gasoline engine has the advantages of higher power output, higher thermal efficiency, higher EGR tolerance and lower emissions due to the operation characteristics of increased volumetric efficiency, compression ratio and ultra-lean combustion scheme. In order to apply the concept of stratified charge into direct injection gasoline engine, some kinds of methodologies have been adapted in various papers. In this study, a reflector was adapted around the injector nozzle to apply the concept of stratified charge combustion which leads the air-fuel mixture to be rich near spark plug. Therefore, the mixture near the spark plug is locally rich to ignite while the lean mixture is wholly introduced into the combustion chamber. The characteristics of combustion is analyzed with the variations of fuel injection pressure and load in a stratified -charge direct injection single cylinder gasoline engine. The obtained results are summarized as follows ; 1. The MBT spark timing approached to TDC with the increase of load on account of the increase of evaporation energy, but has little relation with fuel injection pressure. 2. The stratification effects are apparent with the increase of injection pressure. It is considered by the development of secondary diffusive combustion and the increase of heat release of same region, but proceed rapidly than diesel engine. Especially, in the case of high pressure injection (l70bar) and high load (3.0kgf m), the diffusive combustion parts are developed excessively and results in the decrease of peak pressure than in the case of middle load. 3. The index of engine stability, COVimep value, is drastically decreased with the increase of load. 4. To get better performance of DI gasoline engine development, staged optimizaion must be needed such as injection pressure, reflector, intake swirl, injection timing, chamber shape, ignition system and so on. In this study, the I50bar injection pressure is appeared as the optimum.

Controlling Low Frequency Instability in Hybrid Rocket Combustion With Swirl Injection and Fuel Insert (스월 분사와 삽입연료에 의한 하이브리드 로켓 연소의 저주파수 연소불안정 조절)

  • Hyun, Wonjeong;Lee, Chanjin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.49 no.2
    • /
    • pp.139-146
    • /
    • 2021
  • In hybrid rocket combustion, the oxidizer swirl injection is frequently used to stabilize the combustion as the rotational velocity component affects the boundary layer flow. However, as the swirl strength increases, a problem arises where the combustion performance changes too much. Thus, this study attempts to control the low frequency instability while minimizing the change in combustion performance by adapting attenuated swirl injection with fuel insert used in reference [7]. To this end, a series of experimental tests were performed by varying swirl intensity and the location of the fuel insert. In the tests, the occurrence of combustion instability and combustion performance were closely monitored. The results confirmed that combustion instability was successfully suppressed at the condition of the swirl angle 6 degree and the location of fuel insert 310 mm. And, the changes in combustion pressure, O/F ratio, and fuel regression rate were found as minimal compared to the baseline case. Also the results reconfirmed that the formation of positive coupling between two high frequency oscillations in 500 Hz band, combustion pressure(p') and heat release oscillation(q'), is the necessary and sufficient condition of the occurrence of low frequency instability.

Prediction of Fire Curves Considering the Relationship between Mass Increase and Combustion Time of Combustibles (연소물의 질량증가와 연소시간의 상관관계를 고려한 화재곡선 예측)

  • Eun-Joon Nam;Tae-Il Lee;Goang-Seup Zi
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.28 no.2
    • /
    • pp.9-16
    • /
    • 2024
  • In this paper, we aimed to convert the fire curve in volume units to a fire curve per unit area for application in the Fire Dynamic Simulator (FDS) surface heat release rate method. The fire curve was expressed dimensionlessly considering the total combustion characteristic time, and improvements were made to represent the appropriate ratios for the growth , steady, and decay phases concerning the fire intensity. Additionally, a correction function for combustion characteristic time varying with mass increase was derived. Also to control the growth time values according to the increase in mass, a function to correct the growth phase ratio was derived. Consequently, utilizing existing data, a formula was established to determine the reference mass for combustion materials and predict the fire curve based on mass increase.

A Study on Combustion Characteristics of Finishing Materials in Interior Decoration (실내장식물 인테리어마감재의 연소특성에 관한 연구)

  • Cho, Kwang-Hyun;Lee, Bong-Woo;Yun, Mung-Oh
    • Journal of the Korean Institute of Gas
    • /
    • v.23 no.4
    • /
    • pp.10-18
    • /
    • 2019
  • The Interior finishing materials tried to evaluate the combustion characteristics and the dangerous characteristic of Floor finish and Wall finish. We often use, conducting the experiment ISO 5660-1, Cone Calorimeter method, and ISO-TR-9122 FT-IR. According to the result of Cone calorimeter experiment, the tile carpet FF3 of Floor material had the highest THR $74.6mj/m^2$ because of the highest risk, and the PHRR of FF1 was $726kW/m^2$, which was easy to bum. As a result FT-IR test, The CO, $CO_2$ ratio was 8,146 PPM for roll carpet FF1 than tile carpet FF2, FF3 5,996, 5,171 PPM, which was a carpet with a high toxicity risk. In the case of wall finishes, The MDF plate(WF3) was THR $86.7mj/m^2$ with a high risk, PHRR $384kW/m^2$ was easy to ignite and toxicity index was 5.5. The CO, $CO_2$ ratio was 1,340~8,596 PPM, But the WF4 was the most toxic with 8,596 PPM.

A Study on the Performance and Combustion Characteristics with CNG Substitution Rate in a Diesel Engine (CNG 혼소율 변화에 따른 디젤엔진의 성능 및 연소 특성에 관한 연구)

  • Jang, Hyeong-Jun;Lee, Sun-Youp;Kim, Chang-Gi;Cho, Jeong-Kwon;Lim, Jong-Han;Yoon, Jun-Kyu
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.5
    • /
    • pp.700-707
    • /
    • 2017
  • In the international natural gas market, natural gas has markedly low calories. The domestic calories standard of natural gas was changed and the performance and efficiency of many industrial machines using natural gas were affected because of low caloric natural gas. Therefore, in this study, a dual fuel engine fueled with natural gas and diesel was tested to examine the effects of the CNG substitution rate on the combustion characteristics, such as thermal efficiency, COVimep and heat release rate. The CNG substitution rate was defined as the ratio of CNG instead of diesel, which was calculated as the total energy. The conditions of the tested engine were fixed $1800rpm/500N{\cdot}m$. In addition, diesel fuel was injected at $16^{\circ}CA$ BTDC and the fuel pressure was fixed at 85 MPa; the lower heating value of CNG was $10,400kcal/Nm^3$. The results of the engine test showed that the amount of diesel fuel was changed according to the CNG substitution rate. Therefore, when the substitution rate was increased, the amount of diesel fuel was decreased, which affected the energy for ignition. In addition, the ignition delay duration was increased, which affected the thermal efficiency and torque. On the other hand, the COVimep was less than 5% and a stable combustion state of the engine was shown.

Geometric Effects of Compartment Opening on Fuel-Air Mixing and Backdraft Behavior (개구부의 기하학적 형상이 구획실의 연료-공기 혼합특성 및 백드래프트 거동에 미치는 영향)

  • Ha, Suim;Oh, Chang Bo
    • Fire Science and Engineering
    • /
    • v.33 no.1
    • /
    • pp.30-38
    • /
    • 2019
  • Mixing characteristics and backdraft dynamics were investigated using large eddy simulation for compartments initially filled with methane fuel. Four different opening geometries, i.e. conventional door opening case (Door) and the cases where horizontal door was implemented on the upper ($Slot_U$), middle ($Slot_M$) and lower part ($Slot_L$) of side wall, were considered in the simulations. For cases without ignition, the amounts of inflow oxygen and outflow fuel from the compartment opening were, from largest to smallest, Door > $Slot_U$ ~ $Slot_M$ > $Slot_L$. However, the fuel and oxygen were the best mixed for the $Slot_U$ case while the fuel and oxygen were not well mixed and in relatively separated two layers for the $Slot_L$ case. The global equivalence ratio defined by the amounts of fuel and oxygen in the compartment was not correlated reasonably with the peak pressure of backdraft. The peak pressure during backdraft was the highest for the $Slot_U$ case, a well mixed condition of fuel and air, and backdraft was not found for the $Slot_L$ where the pressure rise was not so high due to the mixing status. The peak pressures for the Door and $Slot_M$ cases were in between Door and $Slot_L$ cases. The peak pressure during backdraft was well correlated with the total amount of heat release until the instance of backdraft occurrence.