• Title/Summary/Keyword: Heat of hydration

Search Result 712, Processing Time 0.025 seconds

Analysis of Heat of Hydration and Thermal Stresses in Mass Concrete (매스 콘크리트의 수화열과 온도 응력 해석)

  • 박영진;김진근;전상은;방기성
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.04a
    • /
    • pp.281-286
    • /
    • 1999
  • Nonlinear temperature distribution induced by the hydration heat generates thermal stress in mass concrete. At early ages, such thermal stress may induce thermal cracks in the structure which can affect on the durability and safety of the structure. Up to now, a lot of works have focused on the prediction of temperature distribution and thermal stress in the structure. In most of such works, however, the inside of structure was considered as adiabatic state to predict temperature distribution and the thermal stress. And due to the lacks of appropriate analysis models after crack, there was little research on the crack occurrence. This paper deals with the prediction of the temperature distribution in the structure using the rate of hydration heat generation and also estimates the behavior of structure before and after cracking due to hydration heat using crack band model.

  • PDF

The Hydration Heat of High Strength Concrete (고강도 콘크리트의 단열온도상승에 관한 실험적 연구)

  • 노재호;한정호;조일호;박연동;정재동;김진근
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1994.04a
    • /
    • pp.209-214
    • /
    • 1994
  • The heat of hydration of cement causes the intemal temperature rise at early age, particulay in massive concrete structures. As the results of the temperature rise and restraint condition, the thermal stress amy induce cracks in concrete. The prediction of the thermal stress is very important in design and consturction slages in order to control the cracks in mass concrete. In this study, the temperature rise of high strength concrete due to the heat of hydration is investigated. Test variables are type and content of binder. As the results, the temperature rise is imcreased with increasing cement content. However, the increament is decreased in higher cement comtnet range. Fly ash is effictive in the reduction of hydration heat.

  • PDF

Deceleration stage and modeling of hydration heat flow for fly ash cement paste (플라이애쉬 시멘트 페이스트의 수화열류 감속 단계 분석 및 모델링에 대한 실험적 연구)

  • Wang, Zihao;Lee, Han-Seung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2022.04a
    • /
    • pp.13-14
    • /
    • 2022
  • This study investigated the effect of fly ash content on the isothermal hydration heat of cement pastes. Two different pastes with fly ash content were studied to cure at 35℃. The hydration heat flow deceleration stage of slurry was simulated and compared by Jander Equation and Ginstling-Brounshtein Equation. The results show that Jander Equation and Ginstling-Brounshtein Equation have certain defects in the modeling of the deceleration stage of the heat flow of cement fly ash paste, and the fitted curve can not describe the deceleration stage well.

  • PDF

Hydration Heat Analysis of Wall according to Placement Length (벽체 타설길이별 수화열 해석)

  • 김태홍;하재담;유재상;이종열;권영호;배수호
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.11a
    • /
    • pp.301-304
    • /
    • 2003
  • Nowadays, hydration heat analysis using FEM is common in thermal crack control of concrete structure. Many kinds of general FEM programs for hydration heat analysis are used in practice. But there are some problems in this using. In this study hydration heat analysis of wall according to placement length are performed. In this results we could get two conclusions. First, general structures like wall having general geometry and construction condition have similar behavior. So it is not necessary to analysis thermal crack in every case. Second, the results of 2D analysis is possible to be applied instead of those of 3D analysis because the results of 2D analysis is similar to 3D analysis in long wall having about 15~18m or over length at 3m height.

  • PDF

The Control of Hydration Heat by Using Liquefied Nitrogen in Mass Concrete Structures (액화질소를 이용한 매스 콘크리트 구조물의 수화열 제어)

  • Yang, In-Hwan;Eo, Jun
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.10b
    • /
    • pp.1151-1156
    • /
    • 2000
  • Temperature rise and restraint condition in mass concrete structures may induce the cracks at early ages. The method to prevent the cracks induced by heat of hydration has become the major concern in mass concrete structure. Therefore, the purpose of this study is to propose a method to control heat of hydration in mass concrete structures by using cryogenic liquefied nitrogen. The method in this study was applied to actual mass concrete structure to prevent the occurrence of thermal cracks at early ages. The surface observation of structure during more than one month shows that there are seldom cracks. This represent that the method in the study is effective in the control of heat of hydration.

  • PDF

Development of Reduction Methods of Thermal Stresses Due to Hydration Heat (수화열에 의한 균열 저감 공법에 관한 연구)

  • Yang, Jo-Kyoung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.9 no.6
    • /
    • pp.1705-1710
    • /
    • 2008
  • In this paper, a program for simulating hydration heat and stresses was developed. And an effective methods were proposed for reduction of hydration heat stresses using flyash and steel fiber. It was shown that flyash replacement made reduction of peak temperature due to hydration heat. However, the effectiveness of reduction of tensile stress was not as good as it of peak temperature. Not only peak temperature but also tensile stress were reduced by the addition of steel fiber.

Modified heat of hydration and strength models for concrete containing fly ash and slag

  • Ge, Zhi;Wang, Kejin
    • Computers and Concrete
    • /
    • v.6 no.1
    • /
    • pp.19-40
    • /
    • 2009
  • This paper describes the development of modified heat of hydration and maturity-strength models for concrete containing fly ash and slag. The modified models are developed based on laboratory and literature test results, which include different types of cement, fly ash, and slag. The new models consider cement type, water-to-cementitious material ratio (w/cm), mineral admixture, air content, and curing conditions. The results show that the modified models well predict heat evolution and compressive strength development of concrete made with different cementitious materials. Using the newly developed models, the sensitivity analysis was also performed to study the effect of each parameter on the hydration and strength development. The results illustrate that comparing with other parameters studied, w/cm, air content, fly ash, and slag replacement level have more significantly influence on concrete strength at both early and later age.

Field Application of Foundation Mass Concrete Applying Hydration Heat Differential Method and Insulation Curing Method (매스콘크리트의 수화열 해석 및 현장 계측을 통한 수화발열량차 공법의 현장적용성)

  • Han, Jun-Hui;Lim, Gun-Su;Shin, Se-Jun;Jeon, Choung-Keun;Kim, Jong;Han, Min-Cheol
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2023.05a
    • /
    • pp.229-230
    • /
    • 2023
  • In this study, the hydration heat differential method was applied to mass concrete structures, and the hydration heat analysis was compared and analyzed with on-site measurement results. The results showed that the temperature history measurements of mass concrete were managed at a difference of 8.4 ℃, and although there was some deviation in thermal stress, a similar trend was observed. Consequently, it was determined that the thermal stress on the surface of mass concrete is less than its tensile strength, which would prevent the occurrence of thermal cracks.

  • PDF

Hydration heat analysis for mass concrete of reaction structure (반력구조체의 매스콘크리트 수화열 해석)

  • Hong, Seok-Beom;Kim, Woo-Jae;Lee, Jae-Sam;Park, Hee-Gon
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2010.05a
    • /
    • pp.261-262
    • /
    • 2010
  • The Reaction structure in POSCO Global R&D center has to be investigated to minimize the crack especially by the hydration heat. In this study, several methods to control the hydration heat are suggested and the computational analysis of hydration heat is performed. The main variables are kinds of concrete, the interval of placement.

  • PDF

An Experimental Study on Hydration Heat Control in The Mass Concrete Using Oscillating Capillary Tube Heat Pipe (진동세관형 히트파이프(OCHP)를 이용한 매스콘크리트의 수화열 제어에 관한 실험적 연구)

  • Beak, Dong-Il;Kim, Myung-Sik;Lee, Moon-Sik;Kim, Kang-Min;Yum, Chi-Sun
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05b
    • /
    • pp.409-412
    • /
    • 2006
  • In process of reinforced concrete(RC) box structure, the heat of hydration may cause serious thermal cracking problems. In order to eliminate hydration heat of mass concrete, this paper reports results of hydration heat control in mass concrete using the OCHP(Oscillating Capillary tube Heat Pipe). Recently OCHP is drawn special attention from these points of low cost as well as short construction schedule for the manufacturing of heat exchanger, flexibility, simplification and high performance. There were three RC box molds$(1.2{\times}1.2{\times}1.2m)$ which shows a difference as compared with each other. One was not equipped with OCHP. While others were equipped with OCHP and these were cooled with air natural convection and spraying water respectively. The OCHP was composed of copper pipe with 12 turns(O.D : 4mm, I.D : 2.8mm). The working fluid was R-22 and its charging ratio was 30(Vol. %). In order to analyze the distribution of temperature and index figure of thermal crack in sequential placement of mass concrete, we used HYCON of computer program. As a result of the experiment, the peak temperature decreased about $15.6\sim23.4^{\circ}C$ than the general specimen and the probability of thermal crack generated in mass concrete decreased up to 0%.

  • PDF