• Title/Summary/Keyword: Heat insulating

Search Result 244, Processing Time 0.024 seconds

Optimization of Plasma Spray Coating Parameters of Alumina Ceramic by Taguchi Experimental Method (실험계획법에 의한 알루미나 세라믹의 플라즈마 용사코팅 최적화)

  • 이형근;김대훈;윤충섭
    • Journal of Welding and Joining
    • /
    • v.18 no.6
    • /
    • pp.96-101
    • /
    • 2000
  • Sintered alumina ceramic substrate has been used for the insulating substrate for thick Hybrid IC owing to its cheapness and good insulating properties. Some of thick HIC's are important to eliminate the heat emitted from the parts that are mounted on the ceramic substrate. Sintered ceramic substrate can not transfer and emit the heat efficiently. It's been tried to do plasma spray coating of alumina ceramic on the metal substrates that have a good heat emission property. The most important properties to commercialize this ceramic coated metal substrate are surface roughness and deposition efficiency. In this study, plasma spray coating parameters are optimized to minimize the surface roughness and to maximize the deposition efficiency using Taguchi experimental method. By this optimization, the deposition efficiency was greatly improved from 35% at the frist time to 75% finally.

  • PDF

A study on the heat cycle aging of insulation materials in large generator stator windings (대형발전기 고정자권선 절연재료의 열 사이클에 의한 열화에 관한 연구)

  • 김희곤;박영관
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.45 no.4
    • /
    • pp.553-557
    • /
    • 1996
  • Heat cycle aging of insulating materials in large generator stator winding has been investigated using both on-line and off-line test methods. On this study, principally, off-line test against actual generator in service was carried out to acquire information about polarization index(PI) and dissipation factor, dissipation factor tip-up, maximum partial discharge for the purpose of remnant breakdown voltage and life assessment. It was found from the tests that both dissipation factor and maximum partial discharge decreased with the increase of operating hours and starting numbers. It was found from off-line tests that the remnant breakdown voltage had a strong relationship with both dissipation factor and maximum partial discharge the remnant breakdown voltage as a results of both operating hours and starting number and the nondestructive tests were proposed as parameters which can predict the remnant lifetime of insulating materials in large generator stator windings. (author). 8 refs., 8 figs., 2 tabs.

  • PDF

Evaluation about Dielectric Property of Heat Transfer Fluids for Fuel Cell Vehicle using Cylindrical Multi-Terminal Capacitive-Conductive Sensor (원통형 다전극식 정전용량-전기전도도 센서를 이용한 연료전지 차량용 냉각수의 유전특성 평가)

  • Kim, Jae-Hoon;Kim, Ju-Han;Kim, Yoon-Hyung;Choi, Kang-Wal;Han, Sang-Ok;Yong, Gee-Joong
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.6
    • /
    • pp.1087-1094
    • /
    • 2010
  • We have developed a cylindrical multi-terminal capacitive-conductive sensor that could be attached to the internal surface of cooling system pipe to evaluate capacitance and conductivity of heat transfer fluid. It was used as measuring system to diagnose insulating condition, by which was kept a insulating resistance of inner stack and at the same time was cooled electrochemical heat of reaction of FCEV(fuel cell electric vehicle) stack that used a compressed hydrogen gas reacting with oxygen in accordance with variation on thermal degradation of nonconductive heat transfer fluid. Also to assess diagnosis characteristics of heat transfer fluid, i.e. coolant, we have performed accelerated aging test using developed sensor attached to cooling system. Consequently, it was measured dielectric and electric resistance of coolant to estimate and analyse for dielectric properties by degradation condition.

The Effect of Heat Curing Methods on the Protection against Frost Damage at Early Age of the Concrete Under Extremely Cold Climate

  • Jung, Eun-Bong;Shin, Hyun-Sup;Han, Min-Cheol
    • Journal of the Korea Institute of Building Construction
    • /
    • v.13 no.6
    • /
    • pp.513-521
    • /
    • 2013
  • This study aimed to examine whether heat curing methods of concrete subjected to $-10^{\circ}C$ could be effective by varying the combination of heating cable and surface heat insulations. Three different concrete specimens incorporating 30% fly ash with 50% W/B were fabricated to simulate wall, column and slab members with dimensions of $1600{\times}800{\times}200$ mm for slab, $800{\times}600{\times}200$ mm for wall and $800{\times}800{\times}800$ mm for column. For heat curing combinations, Type-1 specimens applied PE film for slab, plywood for wall and column curing. Type-2 specimens applied double layer bubble sheet (2LB) and heating coil for slab, and 50 mm styrofoam for wall and column curing. Type-3 specimen applied 2LB for slab, electrical heating mat for wall and column inside heating enclosure. The test results revealed that the temperature of Type 1 specimen dropped below $0^{\circ}C$ beginning at 48 hours after placement due to its poor heat insulating capability. Type 2 and 3 specimens maintained a temperature of around $5{\sim}10^{\circ}C$ after placement due to favorable heat insulating and thermal resistance.

The Properties of Temperature History of Concrete with Surface Insulating Material in Cold Weather Concreting (한중콘크리트 시공시 표면 단열재 변화에 따른 콘크리트의 온도이력 특성)

  • 문학용;신동안;김경민;김기철;오선교;한천구
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2003.05a
    • /
    • pp.7-11
    • /
    • 2003
  • This study investigate the hydration heat history with variation of surface insulating material in cold weather concreting. According to the results, the temperature of concrete lowers below zero in 24hours, so early frost damage occurs in the case of exposure and 1 fold bubble sheet, but the lowest temperature keeps above zero, so a adiabatic effect is very favorable in the case of double bubble sheet and 부직포. Compressive strength of core specimen at 7 and 28 days is highest In the case of double bubble sheet and 부직포. But, considering convenience of construction and economical efficiency, it is thought that the most effective surface insulating material is 1 fold bubble sheet +blanket.

  • PDF

Analysis of Energy Consumption for Microwave Drying in PC Pellet (PC 펠렛의 마이크로웨이브 건조를 위한 에너지 효율 분석)

  • Lee, Hyun Min;Kim, Jae Kyung;Jeon, Euy Sik
    • Journal of the Semiconductor & Display Technology
    • /
    • v.20 no.4
    • /
    • pp.44-48
    • /
    • 2021
  • Semiconductor inspection equipment makes components using materials with insulating properties for functional inspection including current and voltage of semiconductor parts. A representative insulating material is plastic, and plastic is made of a component through an injection process using plastic pellet. When plastic pellets contain excessive moisture, problems such as performance degradation and product surface defects occur. To prevent this, pre-drying is essential, and the heat convective type is the most applied. However, the heat convective type has a problem of low consumption efficiency and a long drying time. Recently, many studies have been conducted on a drying method using microwaves due to high energy efficiency. In this paper, drying was performed using a microwave for drying PC pellets. Energy consumption and drying efficiency analyzed by set up an experimental apparatus of heat convective, microwave, and hybrid(heat convective + microwave) types. It was confirmed that energy consumption and drying efficiency were high when drying using microwaves, and it was confirmed that the hybrid method improved drying performance compared to the heat convective method. It is expected that the research results of this paper can be used as basic data for drying plastic pellets using microwave.

Study on the Electrical Insulation of Current Lead in the conduction-cooled 1-2kV Class High-Tc Superconducting DC Reactor (전도냉각되는 1-2kV급 고온초전도 직류리액터 전류도입부의 전기적 절연에 대한 연구)

  • 배덕권;안민철;이찬주;정종만;고태국;김상현
    • Progress in Superconductivity and Cryogenics
    • /
    • v.4 no.1
    • /
    • pp.30-34
    • /
    • 2002
  • In this Paper, Insulation of current lead in the conduction-cooled DC reactor for the 1.2kV class 3 high-Tc superconducting fault current limiter(SFCL) is studied. Thermal link which conducts heat energy but insulates electrical energy is selected as a insulating device for the current lead in the conduction-cooled Superconducting DC reactor. It consists of oxide free copper(OFC) sheets, Polyimide films, glass fiberglass reinforced Plastics (GFRP) plates and interfacing material such an indium or thermal compound. Through the test of dielectric strength in L$N_2$, polyimide film thickness of 125 ${\mu}{\textrm}{m}$ is selected as a insulating material. Electrical insulation and heat conduction are contrary to each other. Because of low heat conductivity of insulator and contact area between electrical insulator and heat conductor, thermal resistance of conduction-cooled system is increased. For the reducing of thermal resistance and the reliable contact between Polyimide and OFC, thermal compound or indium can be used As thermal compound layer is weak layer in electrical field, indium is finally selected for the reducing of thermal resistance. Thermal link is successfully passed the test. The testing voltage was AC 2.5kVrms and the testing time was 1 hour.

Analysis of DC insulation and properties of epoxy/ceramic composites with nanosized ZnO/TiO2 fillers

  • Kwon, Jung-Hun;Kim, Yu-Min;Kang, Seong-Hwa;Kim, Pyung-Jung;Jung, Jong-Hoon;Lim, Kee-Joe
    • Journal of Ceramic Processing Research
    • /
    • v.13 no.spc2
    • /
    • pp.332-335
    • /
    • 2012
  • A molded transformer is maintenance-free, which makes it unnecessary to replace the insulating material, like in an oil-filled transformer, because the epoxy, which is a molded insulating resin, does not suffer variations in its insulating performance for heat cycles over a long time, as compared to insulating oil. In spite of these advantages, a molded transformer may still be accessed by the user, which is not good in regards to reliability or noise compared to the oil transformers. In particular, a distrust exists regarding reliability due to the long-term insulating performance. These properties have been studied in regards to the improvement of epoxy composites and molded transformer insulation. There have nevertheless been insufficient investigations into the insulation properties of epoxy composites. In this study, it is a researching of the epoxy for insulating material. In order to prepare the specimens, a main resin, a hardener, an accelerator, and a nano/micro filler were used. Varying amounts of TiO2 and ZnO nano fillers were added to the epoxy mixture along with a fixed amount of micro silica. This paper presents the DC insulation breakdown test, thermal expansion coefficient, and thermal conductivity results for the manufactured specimens. From these results, it has been found that the insulating performance of nano/micro epoxy composites is improved as compared to plain molded transformer insulation, and that nano/micro epoxy composites contribute to the reliability and compactness of molded transformers.

A Study for Improvement of Temperature Distribution in Plunger Surface Cooling (브라운관용 플런저 냉각표면의 온도분포 개선을 위한 연구)

  • Kwak, Kyung-Min;Park, Ji-Yeol;Bai, Cheol-Ho
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.25 no.3
    • /
    • pp.126-133
    • /
    • 2008
  • The main objective of the present study is to achieve linear temperature distribution of cooling surface of plunger. K type thermocouples are attached at the surface of plunger to measure temperature. Nozzle and insulating material are inserted in the pin hole of the plunger for this study. Cooling water flow enters at one nozzle and leaves at three nozzles. Flow through nozzle can be activated in the pin hole, temperature of hot point around hole is decreased. Meanwhile, insulating material blocks off heat transfer, temperature of cold point around hole is increased. By combination of nozzle and insulation, heat transfer of hole is controlled effectively, as result its, temperature of plunger surface shows linear temperature distribution.

The Effect of Geometrical Structure on the Heat Transfer of Insulating Nonwovens: A Comparison of Single and Double Layered Nonwovens (보온용 부직포의 구조적 특성이 열전달에 미치는 영향: 단층구조와 이층구조 부직포의 비교)

  • Kim, Hee-Sook
    • Korean Journal of Human Ecology
    • /
    • v.7 no.2
    • /
    • pp.113-119
    • /
    • 1998
  • The purpose of this study was to investigate the effect of geometrical structure on the heat transfer of insulating nonwovens. Commercially available single and double layered polyester nonwovens have used. Thermal conductivity, k and thermal conductance, h were measured by using a constant temperature sandwich type device at dry and wet state. The results obtained were as follows: 1. Double layered nonwovens showed slightly lower thermal conductance and higher warmability than single layered nonwovens. 2. As moisture regain increased, double layered nonwovens showed higher increasing rate of thermal conductivity than single layered nonwovens.

  • PDF