• Title/Summary/Keyword: Heat from Light

Search Result 494, Processing Time 0.026 seconds

Development of multi-cell flows in the three-layered configuration of oxide layer and their influence on the reactor vessel heating

  • Bae, Ji-Won;Chung, Bum-Jin
    • Nuclear Engineering and Technology
    • /
    • v.51 no.4
    • /
    • pp.996-1007
    • /
    • 2019
  • We investigated the influence of the aspect ratio (H/R) of the oxide layer on the reactor vessel heating in three-layer configuration. Based on the analogy between heat and mass transfers, we performed mass transfer experiments to achieve high Rayleigh numbers ranging from $6.70{\times}10^{10}$ to $7.84{\times}10^{12}$. Two-dimensional (2-D) semi-circular apparatuses having the internal heat source were used whose surfaces of top, bottom and side simulate the interfaces of the oxide layer with the light metal layer, the heavy metal layer, and the reactor vessel, respectively. Multi-cell flow pattern was identified when the H/R was reduced to 0.47 or less, which promoted the downward heat transfer from the oxide layer and possibly mitigated the focusing effect at the upper metallic layer. The top boundary condition greatly affected the natural convection of the oxide layer due to the presence of secondary flows underneath the cold light metal layer.

A Study of Characteristics of Heat Dissipation Carbon Magnesium New Materials of LED Lighting (LED 조명용 카본 마그네슘 신소재 방열 특성 연구)

  • Son, Il-Soo;Shin, Sung-Sik
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.26 no.12
    • /
    • pp.915-919
    • /
    • 2013
  • This is the study on the development of fusion heat dissipation of carbon magnesium materials. The purpose of this study is for effective utilization of heat emission which is the core of LED lighting. The result of study enabled the derivation of side satisfying result of making the surface temperature of lighting to be below $70^{\circ}C$ (actual measurement: $58^{\circ}C$) using magnesium. The lighting products that use magnesium was made possible based on the result of this study. Also from the performance aspect such as light distribution, the measurement of light efficiency demonstrated the level of 90 lm/W. Therefore the commercialization of lighting was made possible and the efficiency could be further enhanced by supplementation of LED performance.

THE RELATIVE DEGREE OF CONVERSION OF THE COMPOSITE RESIN SURFACE (복합레진 표면의 중합률)

  • Park, Seong-Ho
    • Restorative Dentistry and Endodontics
    • /
    • v.21 no.1
    • /
    • pp.360-365
    • /
    • 1996
  • The purpose of this study was to evaluate the changes in the degree of conversion on a composite resin surface following heat treatment and mylar strip finishing. The effects of the time interval between the light-curing and heat-curing process were also evaluated. The composite resin surface which had been covered with a coverglass showed a lower conversion rate than the surface from which a layer of $500{\mu}m$ was ground away. The composite resin surface was definitely affected by oxygen during the heat curing process when it had not been insulated. When the composite resins were heat cured after 3 days of storage following the light curing process, the increased in the degree of conversion through heatcuring was limited.

  • PDF

Machine learning of LWR spent nuclear fuel assembly decay heat measurements

  • Ebiwonjumi, Bamidele;Cherezov, Alexey;Dzianisau, Siarhei;Lee, Deokjung
    • Nuclear Engineering and Technology
    • /
    • v.53 no.11
    • /
    • pp.3563-3579
    • /
    • 2021
  • Measured decay heat data of light water reactor (LWR) spent nuclear fuel (SNF) assemblies are adopted to train machine learning (ML) models. The measured data is available for fuel assemblies irradiated in commercial reactors operated in the United States and Sweden. The data comes from calorimetric measurements of discharged pressurized water reactor (PWR) and boiling water reactor (BWR) fuel assemblies. 91 and 171 measurements of PWR and BWR assembly decay heat data are used, respectively. Due to the small size of the measurement dataset, we propose: (i) to use the method of multiple runs (ii) to generate and use synthetic data, as large dataset which has similar statistical characteristics as the original dataset. Three ML models are developed based on Gaussian process (GP), support vector machines (SVM) and neural networks (NN), with four inputs including the fuel assembly averaged enrichment, assembly averaged burnup, initial heavy metal mass, and cooling time after discharge. The outcomes of this work are (i) development of ML models which predict LWR fuel assembly decay heat from the four inputs (ii) generation and application of synthetic data which improves the performance of the ML models (iii) uncertainty analysis of the ML models and their predictions.

Study on the Physical Property of Thermal Curtains for Greenhouse (시설하우스용 보온커튼재의 물리적 특성에 관한 연구)

  • 장유섭;오권영;김승희;전종길;강금춘;정두호
    • Journal of Bio-Environment Control
    • /
    • v.5 no.1
    • /
    • pp.34-42
    • /
    • 1996
  • This study was conducted to investigate the physical and optical properties of polypropylene and polyester thermal curtains, in which tensile strength, heat reservance and light transmission of two different materials were measured. The results from this study are as follows. 1. The tensile weight of different materials were ranged from 3.4kg to 13.4kg, according to the thickness of materials, but that no difference in the tensile strength was appeared between the two materials. The Elongation of polypropylene materials and the tensile weight and strength of polyester materials were greater than any other materials. 2. The light transmittances of two materials were ranged from 50.3% to 81.7 %, light transmittances in polypropylene were higher by 20-30%,than those in polyester. 3. The heat reservances of two materials were ranged from 18.2% to 41.2%, in which polypropylene showed better performance than polyester. 4. From the results of the test, the polypropylene thermal material was better in elongation, heat reservances and light transmittances, but polyester thermal material was better in tensile strength and light isolation than the other material.

  • PDF

A Study on the Thermal Characteristics of 110kW-class IPMSM for Light Railway Transit using the 3-Dimensional Thermal Equivalent Network considering Heat Source by Iron Loss Density Distributions (철손밀도 분포에 의한 열원이 고려된 3차원 열등가회로망을 이용한 경량전철 구동용 110kW급 IPMSM의 열 특성 연구)

  • Park, Chan-Bae
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.7
    • /
    • pp.1038-1044
    • /
    • 2013
  • A research on thermal analysis method is conducted for the characterization of heat generation during operation of Interior Permanent Magnet Synchronous Motor(IPMSM) for Light Railway Transits(LRT) in this paper. Efficient cooling of the heat generated in the IPMSM is important because the excessive heat generated from the winding, core and permanent magnet makes it harder for a long time continuous operation of IPMSM. Therefore, in order to analyze the heat generation characteristics of the 110kW-class IPMSM as advanced research for application the IPMSM to the cooling device, the heat transfer coefficients for each component of the 110 kW-class IPMSM were derived and the thermal equivalent network was configured to perform the thermal analysis in this study. Finally, the 110kW-class IPMSM prototype is made and a comparative verification between the test data and the thermal analysis results through its various performance tests are carried out.

Comparison between Moxibustion and the Intense Pulsed Light (IPL) and the Clinical Application of Photo-moxa (구법(灸法)과 intense pulsed light(IPL)의 특성 비교 및 광선구(光線灸)의 한방임상(韓方臨床) 활용(活用))

  • Jang, In-Soo;Sun, Seung-Ho;Nam, Dong-Hyun;Kum, Su-Eun;Seo, Hyung-Sik
    • The Journal of Korean Medicine Ophthalmology and Otolaryngology and Dermatology
    • /
    • v.23 no.3
    • /
    • pp.78-83
    • /
    • 2010
  • Objectives : The purpose of this study is to compare the principles between moxibustion and the 'Intense pulsed light (IPL)' and to investigate the clinical application of the photo-moxa for the Korean medicine fields. Methods : The characteristics of moxibustion, IPL, parabolic reflector moxa and the dermatology surgical use of moxibustion were reviewed in the literature. Results : IPL is one type of light treatments that is employed by radiating the short-pulse wave, which is transformed from the light of high intensity. There has been used parabolic reflector in Asia for more than 2,000 years, and this hand-held device used for moxibustion in traditional medicine. Moxibustion is one of the treatment tools in Korean medicine using the heat energy. The fluence or energy density of IPL in clinical circumstances is similar to parabolic reflector moxa of moxibustion. IPL and parabolic reflector moxa shared same treatment principle employing the heat energy. Therefore IPL could apply for many indications in Korean medicine as a moxibustion tool and acupuncture. Conclusions: IPL may be plausible to be a fascinate method in phototherapy of Korean medicine.

Fabrication of Lightweight Aggregates Using Fly Ash from Coal Burning Heat Power Plant (화력발전소 발생 플라이애쉬를 이용한 인공골재 제조)

  • Yoon Su-Jong
    • Journal of Powder Materials
    • /
    • v.13 no.2 s.55
    • /
    • pp.102-107
    • /
    • 2006
  • Recycling industrial wastes such as fly ash from a coal burning heat power plant and shell from an oyster farming were investigated to prevent environment contamination as well as to enhance the value of recycling materials. In this study, the lightweight aggregates and the red bricks were fabricated from fly ashes with other inorganic materials and wastes. The starting materials of the lightweight aggregate were fly ash powder and water glass, and the compacts of these materials were heat treated at $1100^{\circ}C$. The fabricated lightweight aggregates had low bulk density, $0.9-1.2\;g/cm^3$, hence floated on the water and had the strength of 7.0-11.0 MPa and the modulus of 2900-3300 MPa which indicates it has enough strength as the aggregate. Another type of the light weight aggregate was prepared from fly ashes, shell powders and clays. The bulk density, porosity, and compressive strength of these aggregates were $1.19-1.34\;g/cm^3,\;18.3{\sim}56.1%$ and 5-12 MPa, respectively. The addition of a small amount of fly ash powder prevented hydration of the light weight aggregates. The red brick was also fabricated from the fly ash containing materials. It is suitable for the brick facing of a building as it has moderate strength and low water absorption rate.

Optical and Thermal Influence Analysis of High-power LED by MCPCB temperature (MCPCB의 온도에 따른 고출력 LED의 광학적, 열적 영향력 분석)

  • Lee, Seung-Min;Yang, Jong-Kyung;Jo, Ju-Ung;Lee, Jong-Chan;Park, Dae-Hee
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.12
    • /
    • pp.2276-2280
    • /
    • 2008
  • In this paper, we present thermal dependancy of LED package element by changing temperature of MCPCB for design high efficiency LED lamp, and confirmed influence of LED chip against temperature with analysis of thermal resistance and thermal capacitance. As increasing temperature, WPOs were decreased from 25 to 22.5 [%] and optical power were also decreased. that is decreased reason of optical power that forward voltage was declined by decrease of energy bandgap. Therefore optical power by temperature of MCPCB should consider to design lamp for street light and security light. Moreover, compensation from declined optical efficiency is demanded when LED package is composed. Also, thermal resistances from chip to metal PCB were decreased from 12.18 to 10.8[$^{\circ}C/W$] by changing temperature. Among the thermal resistances, the thermal resistance form chip to die attachment was decreased from 2.87 to 2.5[$^{\circ}C/W$] and was decreased 0.72[$^{\circ}C/W$] in Heat Slug by chaning temperature. Therefore, because of thermal resistance gap in chip and heat slug, reliability and endurance of high power LED affect by increasing non-radiative recombination in chip from heat.

Thermal Flow Analysis for Development of LED Fog Lamp for Vehicle (차량 LED 안개등 개발을 위한 열유동 해석)

  • Lee, Suk Young
    • Journal of Energy Engineering
    • /
    • v.28 no.4
    • /
    • pp.35-41
    • /
    • 2019
  • In order to overcome these disadvantages, the halogen light source, which was previously used as a vehicle fog light, has increased power consumption and a short lifetime, and thus, an automobile light source is gradually being replaced with an LED. However, when the vehicle LED fog light is turned on, there is a disadvantage in reducing the life of the fog lamp due to the high heat generated from the LED. The heat generated by the LED inside the fog lamp is mainly emitted by the heatsink, but most of the remaining heat is released to the outside through convection. When cooling efficiency decreases due to convection, thermal energy generates heat to lenses, reflectors, and bezels, which are the main parts of lamps, or generates high temperatures in LED, thereby shortening the life of LED fog lights. In this study, we tried to improve the heat dissipation performance by convection in addition to the heat dissipation method by heat sink, and to determine the installation location of vents that can discharge the internal air or intake the external air of LED fog lamp for vehicle. Thermal fluid analysis was performed to ensure that the optimal data were reflected in the design. The average velocity of air increased in the order of Case3 and Case2 compared to Case1, which is the existing prototype, and the increase rate of Case3 was relatively higher than that of other cases. This is because the vents installed above and below the fog lamps induce the convective phenomena generated according to the temperature difference, and the heat is efficiently discharged with the increase of the air speed.