• Title/Summary/Keyword: Heat flux distribution

Search Result 356, Processing Time 0.028 seconds

Characteristic and Measurement Technology of Inner Welding Residual Stresses in Thick Steel Structures (극후물재 용접부 내부잔류응력 측정기술 및 특성)

  • Park, Jeong-ung;An, Gyu-baek;Woo, Wanchuck
    • Journal of Welding and Joining
    • /
    • v.34 no.2
    • /
    • pp.16-21
    • /
    • 2016
  • Recent keywords of the heavy industries are large-scale structure and productivity. Especially, the sizes of the commercial vessels and the offshore structures have been gradually increased to deliver goods and explore or produce oil and natural gas in the Arctic. High heat input welding processes such as electro gas welding (EGW) have been widely used for welding thick steel plates with flux-cored arc welding (FCAW), especially in the shipbuilding industries. Because high heat input welding may cause the detrimental effects on the fracture toughness of the welded joint and the heat affected zone, it is essential to obtain the sufficient toughness of welded joint. There are well known that the fracture toughness like CTOD, CVN, and KIC were very important factors in order to secure the safety of the structures. Furthermore, the welding residual stress should be considered to estimate the unstable fracture in both EGW and FCAW. However, there are no references on the welding residual stress distribution of EGW and FCAW with thick steel plates. Therefore the welding residual stresses were very important elements to evaluate the safety of the welded structure. Based on the measurement results, the characteristics of residual stress distribution through thickness were compared between one-pass electron gas welding and multi-pass flux-cored arc welding. The longitudinal residual stress in the multi-pass flux-cored arc welding is tensile through all thicknesses in the welding fusion zone. Meanwhile, longitudinal residual stress of EGW is tensile on both surfaces and compressive at the inside of the plate. The magnitude of residual stresses by electron gas welding is lower than that by flux-cored arc welding.

Analysis of the Radiative Heat Transfer in a Cylindrical Enclosure with Obstacles Using the Discrete Ordinate and Finite Volume Method (구분종좌표법 및 유한체적법을 이용한 장애물이 있는 원통형 밀폐공간에서의 복사열전달 해석)

  • Kim, Seong-Woo;Kim, Il-Kyoung;Kim, Woo-Seung
    • Proceedings of the KSME Conference
    • /
    • 2000.11b
    • /
    • pp.347-352
    • /
    • 2000
  • In the present study, DOM and FVM have been used to analyze the radiative heat transfer in an axisymmetric cylindrical enclosure with obstacles. Heat flux distributions on the wall of enclosure form DOM and FVM are compared to those from simplified zone analysis for a nonparticipating medium. The comparison of DOM and FVM is also presented. Results show that there is a good agreement between FVM and simplified zone analysis. In addition, the effect of the thickness of the obstacle on the results is considered. Heat flux distribution on the surface of the obstacle is also presented.

  • PDF

A Study on the Transient Heat Transfer in Annular Fin with Uniform Thickness Considering Biot Number (Biot수를 고려한 균일두께의 환상휜에서의 과도열전달에 관한 연구)

  • Kim, Kwang-Soo
    • The Magazine of the Society of Air-Conditioning and Refrigerating Engineers of Korea
    • /
    • v.14 no.2
    • /
    • pp.138-149
    • /
    • 1985
  • The heat diffusion equation for an annular fin is analyzed using Laplace transformations. The fin has a uniform thickness with its edge heat loss and two temperature profiles at the base such as a step change in temperature or heat flux. To obtain the exact solutions for temperature distribution, this paper can detect the eigenvalues which satisfy the roots of transcendental equations in above two cases during inverse Laplace transformations. The exact solutions for temperature and heat flux are obtained with the infinite Series by dimensionless factors. The solutions are developed for small and large values of times. These series solutions converge rapidly for large values of time, but slowly for small.

  • PDF

Analysis of Heat Transfer in Cooling of a Hot Plate by Planar Impingement Jet (평면충돌제트에 의한 고온 판 냉각과정의 열전달 해석)

  • Ahn, Dae-Hwan;Kim, Dong-Sik
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.33 no.1
    • /
    • pp.17-27
    • /
    • 2009
  • Water jet impingement cooling is used to remove heat from high-temperature surfaces such as hot steel plates in the steel manufacturing process (thermo-mechanical cooling process; TMCP). In those processes, uniform cooling is the most critical factor to ensure high strength steel and good quality. In this study, experiments are performed to measure the heat transfer coefficient together with the inverse heat conduction problem (IHCP) analysis for a plate cooled by planar water jet. In the inverse heat transfer analysis, spatial and temporal variations of heat transfer coefficient, with no information regarding its functional form, are determined by employing the conjugate gradient method with an adjoint problem. To estimate the two dimensional distribution of heat transfer coefficient and heat flux for planar waterjet cooling, eight thermo-couple are installed inside the plate. The results show that heat transfer coefficient is approximately uniform in the span-wise direction in the early stage of cooling. In the later stage where the forced-convection effect is important, the heat transfer coefficient becomes larger in the edge region. The surface temperature vs. heat flux characteristics are also investigated for the entire boiling regimes. In addition, the heat transfer rate for the two different plate geometries are compared at the same Reynolds number.

A Study of the Effects of Process Variables on Temperature and Magnetic-flux Distribution in Induction Heating of Steel Plate (강판의 유도가열에서 공정변수가 온도 및 자속분포에 미치는 영향에 관한 연구)

  • 배강열;이태환;양영수
    • Journal of Welding and Joining
    • /
    • v.19 no.5
    • /
    • pp.526-533
    • /
    • 2001
  • Induction heating of float metal products has an increasing importance in many applications, because it generates the heat within workpiece itself and provides high power densities and productivity. In this study, the induction heating of a steel plate to simulate the line heating is investigated by means of the Finite Element Analysis of the magnetic field and temperature distribution. A numerical model is used to calculate temperature distribution within the steel plate during the induction heating with a specially designed inductor. The effects of materital properties depending on the temperature and magnetic field are taken into consideration in an iterative manner. The simulation results show good magnetic field with experimental data and provide good understanding of the process. Since the numerical model demonstrates to be suitable for analysis of induction heating process, the effects of air gap and frequency on magnetic-flux and power-density distribution are also investigated. It is revealed that these process parameters have an important roles on the electro-magnetic field and power-density distribution governing the temperature distribution of the plate.

  • PDF

A Prediction Model for Condensation of Zeotropic Refrigerant Mixtures Inside a Horizontal Smooth Tube (수평평활관내의 비공비 혼합냉매의 응축에 대한 예측모델)

  • ;;小山繁
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.13 no.4
    • /
    • pp.262-270
    • /
    • 2001
  • This paper deals with a prediction method for the condensation of ternary refrigerant mixture inside a horizontal smooth tube. Based on some reliable assumptions, the governing equations for the local heat and mass transfer characteristics are derived, and the prediction for the condensation of ternary zeotropic refrigerant mixtures composed of HFC32/HFC125/HFC134a, including R407C, is carried out. The local values of vapor quality, thermodynamic states at bulk vapor, vapor-liquid interface and bulk liquid, mass flux etc. are obtained for a constant wall temperature and a constant wall heat flux conditions, and the effects of the composition of HFC32/HFC125/HFC134a on heat transfer characteristics are examined. The prediction result is also compared with experimental data for condensation of ternary refrigerant mixtures. The predicted wall temperature distribution has a similar trend with experimental data but the predicted local heat transfer coefficients are 20-30% higher than the experimental data.

  • PDF

Forced Convection Boiling Heat Transfer from a Horizontal Cylinder to Subcooled Water

  • Lee, Sung-Hong;Lee, Euk-Soo
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.7
    • /
    • pp.79-90
    • /
    • 1999
  • This investigation presents the experimental results of forced convection boiling heat transfer around a circular, electrically heated horizontal cylinder to subcooled water in cross flow. In these experiments, the following primary variables were included: heat flux, flow velocity, pressure and degree of subcooling at inlet. Local surface temperatures were measured at nine peripheral positions. Local surface temperature distributions are classified into four categories depending on the supplied heat flux. The effects of the boiling curve depending on the fluid velocity, degree of subcooling at inlet and pressure are presented.

  • PDF

The effect of forced convection on boiling heat transfer from a horizontal tube (수평 원관의 비등 열전달에서 강제대류의 영향)

  • 이승홍;이억수;정은행
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.10 no.5
    • /
    • pp.558-568
    • /
    • 1998
  • This paper presents the results of experiments involving external forced convection on boiling heat transfer from electrically heated horizontal tube to water in cross flow. In these experiments, all of the following primary variables were varied: heat flux, cross flow velocity, pressure and degree of subcooling. Local surface temperatures were measured at nine peripheral positions. Surface temperature distributions are classified into four groups as a function of heat flux. The characteristics of the boiling curve at different velocity, degree of subcooling and pressure are examined.

  • PDF

Optimization of an Automotive Disc Brake Cross-section with Least Thermal Deformation by Taguchi Method (최소 열변형을 위한 자동차 디스크 브레이크 단면형상의 다구찌기법 기반 최적설계)

  • Kim, Cheol;Ha, Tae-jun
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.24 no.1
    • /
    • pp.1-9
    • /
    • 2016
  • Optimum cross-sectional shape of an automotive disc brake was developed based on FEM thermal analyses and the Taguchi method. Frictional heat flux and convection heat transfer coefficients were first calculated using equations and applied to the disc to calculate accurate temperature distribution and thermal deformations under realistic braking conditions. Maximum stress was generated in an area with highest temperature under pads and near the hat of ventilated disc and vanes. The SN ratio from Taguchi method and MINITAB was applied to obtain the optimum cross-sectional design of a disc brake on the basis of thermal deformations. The optimum cross-section of a disc can reduce thermal deformation by 15.2 % compared to the initial design.

Analysis of the Combined Surface Radiation-Natural Convection in a Rectagular Enclosure with a Selectively Transparent Wall (선택적 투과성면을 가진 직사각형 밀폐공간에서의 표면복사 및 자연대류해석)

  • Park D. S.;Lee T. S.;Lee J. S.
    • The Magazine of the Society of Air-Conditioning and Refrigerating Engineers of Korea
    • /
    • v.16 no.2
    • /
    • pp.194-203
    • /
    • 1987
  • A numerical study has been conducted on the combined radiation-natural convection heat transfer characteristics in a square cavity with a selectively transparent wall. The fluid in the cavity is assumed to be transparent to the thermal radiation. The effect of the wall emissivity is mainly considered in view of the temperature and flow fields. The comparison of the radiative heat flux and conductive heat flux variations along the isothermal wall is presented as well. The results show that the Nusselt number distribution is fairly uniform due to the com-pensative interaction of the radiation and convection heat transfer.

  • PDF