• 제목/요약/키워드: Heat flow efficiency

Search Result 657, Processing Time 0.03 seconds

컴팩트형 수증기 개질장치 효율분석 (Efficiency Analysis of Compact Type Steam Reformer)

  • 오영삼;송택용;백영순;최리상
    • 한국수소및신에너지학회논문집
    • /
    • 제13권4호
    • /
    • pp.304-312
    • /
    • 2002
  • In this study, the performance of the $5Nm^3/hr$ compact type steam reformer which was developed for application of fuel cell or hydrogen station was evaluated in terms of gas process efficiency. For these purposes, reforming efficiency and total efficiency with system load change were analyzed. The reforming efficiency was calculated from the total molar flow of hydrogen output over total fuel flow input to the reformer and the burner on the higher heating value(HHV). In the case of the total efficiency, recovered heat at the heat recovery exchanger was considered. From the results, it was known that system performance was stable, because methane conversion showed the a slight decline which is about 2% though increasing system load to full. Reforming efficiency was increased from 20% to 58%, respectively as increasing system load from 10% to 90%. It was found that total efficiency was higher then reforming efficiency because of terms of heat recovered. As a results, it was known that total efficiency was increased form 75% to 83% at the 10% and 90% system load, respectively. From these results, it is concluded that compact steam reformer which is composed of stacking plate-type reactors is suitable to on-site hydrogen generator or to fuel cell application because of quick start within 1 hr and good performance.

Flow Visualization of Oscillation Characteristics of Liquid and Vapor Flow in the Oscillating Capillary Tube Heat Pipe

  • Kim, Jong-Soo;Kim, Ju-Won;Jung, Hyun-Seok
    • Journal of Mechanical Science and Technology
    • /
    • 제17권10호
    • /
    • pp.1507-1519
    • /
    • 2003
  • The two-phase flow patterns for both non-loop and loop type oscillating capillary tube heat pipes (OCHPs) were presented in this study. The detailed flow patterns were recorded by a high-speed digital camera for each experimental condition to understand exactly the operation mechanism of the OCHP. The design and operation conditions of the OCHP such as turn number, working fluid, and heat flux were varied. The experimental results showed that the representative flow pattern in the evaporating section of the OCHP was the oscillation of liquid slugs and vapor plugs based on the generation and growth of bubbles by nucleate boiling. As the oscillation of liquid slugs and vapor plugs was very speedy, the flow pattern changed from the capillary slug flow to a pseudo slug flow near the annular flow. The flow of short vapor-liquid slug-train units was the flow pattern in the adiabatic section. In the condensing section, it was the oscillation of liquid slugs and vapor plugs and the circulation of working fluid. The oscillation flow in the loop type OCHP was more active than that in the non-loop type OCHP due to the circulation of working fluid in the OCHP. When the turn number of the OCHP was increased, the oscillation and circulation of working fluid was more active as well as forming the oscillation wave of long liquid slugs and vapor plugs in the OCHP. The oscillation flow of R-142b as the working fluid was more active than that of ethanol and the high efficiency of the heat transfer performance of R -142b was achieved.

수직다발관형 빙축열 탱크내 물의 응고과정시 열전달특성에 관한 연구 (An Experimental Study on the Heat Transfer Characteristics during the Freezing Process of Water in the Vertical Multi Tube Type Ice Storage Tank)

  • 김영기;임장순
    • 태양에너지
    • /
    • 제18권3호
    • /
    • pp.95-105
    • /
    • 1998
  • In this study, basic design data which were required for development of highly efficient ice storage system with low temperature latent heat were experimentally obtained. The ice storage system considered in this study was the one that has been widly used in the developed country and called the ice-on-coil type. Using the system, the ice storage performance for various design parameters which were the flow direction and the inlet temperature of the secondary fluid was tested. In addition, the timewise variation of the interface profiles between the solid and the liquid were visualized, and the heat transfer characteristics of the Phase Change Material(PCM) in the ice storage tank were Investigated. During the freezing processes in the ice storage tank with several vertical tubes, decrease of the heat transfer area and the heat resistance of the ice layer made the increasing rate of ice packing factor(IPF) less. The total freezing energy for the upward flow of the secondary fluid was higher than that for the downward flow. The average ice storage efficiency for the upward flow of the secondary fluid was higher than that for the downward flow.

  • PDF

연료전지용 판형 막 가습기의 유동방향에 따른 열 및 물질전달 특성에 관한 해석적 연구 (Numerical Study of Characteristic of Heat and Mass Transfer in Planar Membrane Humidifier According to Flow Direction)

  • 윤성호;변재기;최영돈
    • 대한기계학회논문집B
    • /
    • 제37권5호
    • /
    • pp.503-511
    • /
    • 2013
  • 연료전지 시스템에서 공급기체 가습은 연료전지 성능효율과 전해질막 수명 향상 측면에서 중요하다. 판형 막 가습기는 일반적으로 유동 방향에 따라 직교류와 대향류로 구분되고 판과 막 사이에서 고온 다습한 공기와 저온 건조한 공기의 열 및 물질전달이 이루어진다. 본 연구에서는 현열 및 잠열 ${\varepsilon}$-NTU 법을 이용하여 입구 온도와 유량 변화에 따른 열 및 물질전달 성능 변화를 유동 방향에 따라 비교하였다. 이를 통하여 저유량 일 때 대향류는 직교류 보다 열 및 물질전달 성능이 높은 것을 알 수 있었고 유량이 증가함에 따라 성능 차이가 감소되는 것을 확인할 수 있었다. 그리고 입구온도가 증가함에 따라 열전달 성능 변화는 작은 반면 물질전달 성능 변화는 비선형으로 크게 감소되는 결과를 얻었다.

Heat Transfer Characteristics in a Cylindrical Duct Packed with Solid Spheres

  • Lee, Seung-Hyuk;Kang, Kwan-Gu;Kim, Sung-Chan;Ryou, Hong-Sun;Noh, Dong-Soon
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • 제13권1호
    • /
    • pp.11-21
    • /
    • 2005
  • The present paper investigates the heat transfer characteristics in a cylinder packed with porous medium of solid spheres for various parameters such as mass flow rate, sphere diameter, length of the porous medium, and gas temperatures. Pressures and temperatures at the inlet and outlet regions were measured by using static pressure gages and R-type thermocouples. The modified relationship based on the Ergun equation is suggested for the estimation of pressure drops. In addition, the useful empirical correlation for thermal efficiency is obtained in the current study. Thermal efficiency is expressed in terms of non-dimensional time, sphere diameter, porosity, and pressure drops. It is also found that the pressure drop through the cylinder becomes larger as the gas temperature does higher at the inlet region, whereas it substantially decreases when the inlet flow rate decreases.

인쇄기판형열교환기 핵심치수 구조설계 (Structural Design for Key Dimensions of Printed Circuit Heat Exchanger)

  • 김용완;강지호;사인진;김응선
    • 한국압력기기공학회 논문집
    • /
    • 제14권1호
    • /
    • pp.24-31
    • /
    • 2018
  • The mechanical design procedure is studied for the PCHE(printed circuit heat exchanger) with electrochemical etched flow channels. The effective heat transfer plates of PCHE are assembled by diffusion bonding to make a module. PCHE is widely used for industrial applications due to its compactness, cost efficiency, and serviceability at high pressure and/or temperature conditions. The limitations and technical barriers of PCHE are investigated for application to nuclear components. Rules for design and fabrication of PCHE are specified in ASME Section VIII but not in ASME Section III of nuclear components. Therefore, the calculation procedure of key dimensions of PCHE is defined based on ASME section VIII. The effective heat transfer region of PCHE is defined by several key dimensions such as the flow channel radius, edge width, wall thickness, and ridge width. The mechanical design procedure of key dimensions was incorporated into a program for easy use in the PCHE design. The effect of assumptions used in the key dimension calculation on stress values is numerically investigated. A comparative analysis is done by comparing finite element analysis results for the semi-circular flow channels with the formula based sizing calculation assuming rectangular cross sections.

Marangoni convection radiative flow of dusty nanoliquid with exponential space dependent heat source

  • Mahanthesh, Basavarajappa;Gireesha, Bijjanal Jayanna;PrasannaKumara, Ballajja Chandra;Shashikumar, Nagavangala Shankarappa
    • Nuclear Engineering and Technology
    • /
    • 제49권8호
    • /
    • pp.1660-1668
    • /
    • 2017
  • The flow of liquids submerged with nanoparticles is of significance to industrial applications, specifically in nuclear reactors and the cooling of nuclear systems to improve energy efficiency. The application of nanofluids in water-cooled nuclear systems can result in a significant improvement of their economic performance and/or safety margins. Therefore, in this paper, Marangoni thermal convective boundary layer dusty nanoliquid flow across a flat surface in the presence of solar radiation is studied. A two phase dusty liquid model is considered. Unlike classical temperature-dependent heat source effects, an exponential space-dependent heat source aspect is considered. Stretching variables are utilized to transform the prevailing partial differential system into a nonlinear ordinary differential system, which is then solved numerically via the Runge-Kutta-Fehlberg approach coupled with a shooting technique. The roles of physical parameters are focused in momentum and heat transport distributions. Graphical illustrations are also used to consider local and average Nusselt numbers. We examined the results under both linear and quadratic variation of the surface temperature. Our simulations established that the impact of Marangoni flow is useful for an enhancement of the heat transfer rate.

$CO_2$ 히트펌프 가스쿨러의 설계변수 변화에 따른 성능해석 (Performance Analysis with Change in Design Parameters of $CO_2$ Heat Pump Gas Cooler)

  • 장영수;김민석
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2006년도 하계학술발표대회 논문집
    • /
    • pp.639-644
    • /
    • 2006
  • The outlet temperature of gas cooler has a great effect on the efficiency of carbon dioxide heat pump system. In order to obtain a small approach temperature difference at gas cooler, near-counter flow type heat exchanger has been proposed, and larger heat transfer area is demanded. The optimum design of gas cooler involving the analysis of trade-offs between heat transfer performance and cost is desirable. In this study, the effects of geometric parameters, such as the circuit arrangement, tube diameter, transverse tube spacing, longitudinal tube spacing and the number of tube rows and fin spacing on the performance of heat transfer were investigated using the developed model. This study suggested various simulation results for optimum designs of gas cooler.

  • PDF

온침 열특성의 기류 영향에 관한 연구 (Study of Air Flow Effects on Heat Characteristics of Warm Needle Acupuncture)

  • 김정우;이혜정;이승호
    • Korean Journal of Acupuncture
    • /
    • 제27권4호
    • /
    • pp.35-47
    • /
    • 2010
  • Objectives : To characterize the thermal properties of traditional warm needle and new warm needle with various air flows as an important environmental factor and to suggest the necessity of maintaining suitable environment of clinics to maximize their efficacy. Methods : We measured the temperature characteristics of traditional moxa warm needle and new moxa charcoal warm needle by applying an automatic temperature acquisition system with thermocouples while external various air flows were supplied. Temperatures of two positions at the needle body were measured while a moxa cone burned. Typical temperature characteristics like peak temperature, duration, curve shape and the efficiency of the heat stimuli by heat amount analysis were executed. Results : Both warm needles showed similar temperature curve with an increase in the air flow. Peak temperature and duration of effective heat decreased with the air flow, as shown in indirect moxibustion on garlic. The temperature change pattern by the air flow became more apparent when the total combustion heat was compared with the effective heat. The values from two positions on the needle body were significantly different, showing a distance dependency from the heat source of warm needle acupuncture. Conclusions : Thermal properties of warm needle acupuncture was observed variously with surrounding air flow of 0.0 - 0.7 m/s. It emphasized the importance of environmental control as well as the warm needle itself such as heat source and needle. The latter has already been known to deliver designated heat to subjects. It also indicated the importance of education and skill of the practitioners of warm needle acupuncture.

태양열이용 직접접촉 열교환기내의 열전달 특성연구 (Heat Transfer Characteristics of Direct Contact Heat Exchanger Using Solar Energy)

  • 강용혁;전명석;윤환기;천원기
    • 한국에너지공학회:학술대회논문집
    • /
    • 한국에너지공학회 1995년도 춘계학술발표회 초록집
    • /
    • pp.78-81
    • /
    • 1995
  • In the present study, the spray column type of direct contact heat exchangers are studied experimentally to analyze heat transfer characteristics for solar energy utilization. These experiments are carried out in the line of solar heating system, major results are as follows ; 1) the flow and aspect of working fluid drop for maxium heat transfer 2) efficiency and volumetric heat transfer coefficient of D. C. H. X. with a heavier working fluid are higher than those of D. C. H. X. with a lighter working fluid

  • PDF