• Title/Summary/Keyword: Heat exchange pipe

Search Result 58, Processing Time 0.025 seconds

Study on Efficiency for Underground Heat Transfer of Metal Heat Exchanger (금속재질 열교환기의 지중 열교환 효율에 관한 연구)

  • Song, Jae-Yong;Kim, Ki-Joon;An, Sang-Gon;Kim, Jin-Sung;Jeong, Gyo-Cheol
    • The Journal of Engineering Geology
    • /
    • v.25 no.1
    • /
    • pp.131-148
    • /
    • 2015
  • The purpose of this study is to analyze and compare the heat transfer efficiency of using copper pipe, stainless pipe and traditional PE pipe commonly used for geothermal heat exchanger, with aims at seeking improved methods. In addition, the varying efficiency of heat transfer from ground heat and groundwater heat was assessed and its applicability was discussed. Design parameters for empirical field study were derived by controlling flow rate, velocity and caliber of pipes of the heat exchanger after the thermal efficiency of the heat exchanger material was evaluated. The heat exchange efficiency and effective thermal conductivity were measured with changing pattern through field thermal efficiency and thermal response test. Experimental results show that the metal material showed higher heat transfer efficiency than the PE pipe. Although the heat transfer efficiency was not high with the increase of the pipe diameter in the flow rate, it was high with the increase of the pipe diameter in the velocity.

Performance-based comparison of energy pile of various heat exchange pipe arrangement by in-situ thermal response test (현장 열응답 시험을 통한 에너지파일의 열교환파이프 배열 방식에 따른 성능 비교)

  • Min, Sunhong;Koh, Hyungseon;Yoo, Jaihyun;Jung, Kyoungsik;Lee, Youngjin;Choi, Hangseok
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.196.1-196.1
    • /
    • 2011
  • In this study, a test bed was constructed in order to evaluate thermal efficiency of the energy pile which carries out combined roles of a structural foundation and of a heat exchanger. The energy pile in this study is designed as a large-diameter drilled shaft equipped with the heat exchange pipes which configures a W-shape and an S-shape. The drilled shaft reached to the depth of 60 m whilst the heat exchange pipes were installed to about 30 m deep from the ground surface. The W-shaped and S-shaped heat exchange pipes were installed in the opposite sections of the same drilled shaft. In-situ thermal response tests were performed for both the shapes of heat exchange pipes. To avoid underestimating the thermal performance due to hydration heat of concrete inside the drilled shaft, the in-situ thermal response tests for the energy pile were performed after four weeks since the installation of the energy pile.

  • PDF

Image Processing Technique for an Automatic Inspection of the Surface Outlook of High Speed Moving Plate. (고속 이동 판재의 자동 외관 검사를 위한 영상처리)

  • 부광석;임성현;조현춘
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.219-219
    • /
    • 2000
  • A Plate type pipe is used for heat exchange in radiator of a vehicle. The pipe has several rooms through which water flows and heat is dissipated into outside . In the case that there are small holes, cracks or some scratches on the plate, the radiators lost their functions due to Leakage. This may result in overheating of engine in a car. Thus, we need to perform the entire inspection of the plate type pipe in advance before assembling the radiator. In manufacturing process of the plate type pipe, the productive speed is very high and that may be performed continuously. So, there is no room to perform the outlook inspection by typical image processing techniques. This paper proposes a new method to inspect the outlook surface of the plate type pipe automatically with high speed. Especially, the sequential processing technique of an algorithm which detects defects on the surfaces of the plate type pipe is proposed for line scan camera which captures line image. To evaluate the inspection performance, a series of experiments is performed.

  • PDF

Evaluation of Applicability of Steel-pipe Energy Piles Through Thermal Performance Test (TPT) (현장 열성능 평가시험을 통한 강관 에너지파일의 적용성 평가)

  • Lee, Seokjae;Choi, Hangseok
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.18 no.2
    • /
    • pp.1-9
    • /
    • 2022
  • A novel steel-pipe energy pile is introduced, in which the deformed rebars for main reinforcing are replaced with steel pipes in a large diameter cast-in-place energy pile. Here, the steel pipes act as not only reinforcements but also heat exchangers by circulating the working fluid through the hollow hole in the steel pipes. Under this concept, the steel-pipe energy pile can serve a role of supporting main structures and exchanging heat with surrounding mediums without installing additional heat exchange pipes. In this study, the steel-pipe energy pile was constructed in a test bed considering the material properties of steel pipes and the subsoil investigation. Then, the thermal performance test (TPT) in cooling condition was conducted in the constructed energy pile to investigate thermal performance. In addition, the thermal performance of the steel-pipe energy pile was compared with that of the conventional large diameter cast-in-place energy pile to evaluate its applicability. As a result, the steel-pipe energy pile showed 11% higher thermal performance than the conventional energy pile along with much simpler construction processes.

Characteristics of Evaporation Heat Transfer in a Small-Scale Cryogenic Heat Exchange System for the Utilization of LNG Cold Energy (LNG 냉열활용을 위한 초저온 열교환시스템의 축소모형에서 증발 열전달 특성)

  • Nam S. C.;Lee S. C.;Lee Y. W.;Sohn Y. S.
    • Journal of the Korean Institute of Gas
    • /
    • v.2 no.4
    • /
    • pp.25-33
    • /
    • 1998
  • The characteristics of evaporation heat transfer for the utilization of LNG cold energy was investigated experimentally using liquified nitrogen and a solution of ethylene-glycol and water under horizontal two-phase conditions in the small-scale equipment of a cryogenic heat exchange system. The inner tubes in the double pipe heat exchanger with 8 mm and 15 mm inner diameter and 6 m length were adopted as a smooth test tubes and enhanced tubes by means of wire-coil inserts. Heat transfer coefficients and Nusselt number for the test tube were calculated from measurements of temperatures, flowrates and pressures. The correlations in a power-law relationship of the Nusselt number, the Reynolds number and Prandtl number for heat transfer were proposed which can be available for design of cryogenic heat exchangers. The correlations showed heat transfer coefficients for the wire-coil inserts were much higher than those for the smooth tubes, increased by more than 2.5 ${\~}$ 5.5 times depending upon the equivalent Reynolds number. Form and length of cryogenic double pipe heat exchanger were proposed for applicable to the utilization of LNG cold energy.

  • PDF

Study on Thermal Behavior and Design Method for Coil-type PHC Energy Pile (코일형 PHC 에너지파일의 열적 거동 및 설계법에 관한 연구)

  • Park, Sangwoo;Sohn, Jeong-Rak;Park, Yong-Boo;Ryu, Hyung-Kyou;Choi, Hangseok
    • Journal of the Korean Geotechnical Society
    • /
    • v.29 no.8
    • /
    • pp.37-51
    • /
    • 2013
  • An energy pile encases heat exchange pipes to exchange thermal energy with the surrounding ground formation by circulating working fluid through the pipes. An energy pile has many advantages in terms of economic feasibility and constructability over conventional Ground Heat Exchangers (GHEXs). In this paper, a coil-type PHC energy pile was constructed in a test bed and its thermal performance was experimentally and numerically evaluated to make a preliminary design. An in-situ thermal response test (TRT) was performed on the coil-type PHC energy pile and its results were compared with the solid cylinder source model presented by Man et al. (2010). In addition, a CFD numerical analysis using FLUNET was carried out to back-analyze the thermal conductivity of the ground formation from the Ttype PHC energy RT result. To study effects of a coil pitch of the coil-type heat exchange pipe, a thermal interference between the heat exchange pipes in PHC energy piles was parametrically studied by performing the CFD numerical analysis, then the effect of the coil pitch on thermal performance and efficiency of heat exchange were evaluated. Finally, an equivalent heat exchange efficiency factor for the coil-type PHC energy pile in comparison with a common multiple U-type PHC energy pile was obtained to facilitate a preliminary design method for the coil-type PHC energy pile by adopting the PILESIM2 program.

Comparision of Heat Exchanging Performance Depending on Different Arrangement of Heat Exchanging Pipe (II) (열회수장치의 열교환 파이프배치형식별 열교환 성능 비교(II))

  • Suh, Won-Myung;Kang, Jong-Guk;Yoon, Yong-Cheol;Kim, Jung-Sub
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2001.10a
    • /
    • pp.281-285
    • /
    • 2001
  • This study was carried out to improve the performance of heat recovery device attached to exhaust gas flue connected to combustion chamber of greenhouse heating system. Three different units were prepared for the comparison of heat recovery performance; AB-type(control unit) is exactly the same with the typical one fabricated for previous study of analyzing heat recovery performance in greenhouse heating system, other two types(C-type and D-type) modified from the control unit are different in the aspects of airflow direction(U-turn airflow) and pipe arrangement. The results are summarized as follows; 1. In the case of Type-AB, when considering the initial cost and current electricity fee required for system operation, it is expected that one or two years at most would be enough to return the whole cost invested. 2. Type-C and Type-D, basically different with Type-AB in the aspect of airflow pattern, are not sensitive to the change of blower capacity with higher than $25\;m^{3}/min$. Therefore, heat recovery performance was not improved so significantly with the increment of blower capacity. This is assumed to be that air flow resistance in high air capacity reduces the heat exchange rate as well. Never the less, compared with control unit, resultant heat recovery rate in Type-C and Type-D were improved by about 5% and 13%, respectively. 3. Desirable blower capacity for these heat recovery units experimented are expected to be about $25\;m^{3}/min$, and at the proper blower capacity, U-turn airflow units showed better heat recovery performance than control unit. But, without regard to the type of heat recovery unit, it is recommended that comprehensive consideration of system's physical factors such as pipe arrangement density, unit pipe length and pipe thickness, etc., are required for the optimization of heat recovery system in the aspects of not only energy conservation but economic system design.

  • PDF

Evaluation on Thermal Performance Along with Constructability and Economic Feasibility of Large-diameter Cast-in-place Energy Pile (대구경 현장타설 에너지파일의 열교환 성능과 시공성 및 경제성 분석)

  • Park, Sangwoo;Sung, Chihun;Lee, Dongseop;Jung, Kyoungsik;Choi, Hangseok
    • Journal of the Korean Geotechnical Society
    • /
    • v.31 no.5
    • /
    • pp.5-21
    • /
    • 2015
  • An energy pile is a novel type of ground heat exchangers (GHEX's) which sets up heat exchange pipes inside a pile foundation, and allows to circulate a working fluid through the pipe for exchanging thermal energy with the surrounding ground stratum. Using existing foundation structure, the energy pile can function not only as a structural foundation but also as a GHEX. In this paper, six full-scale energy piles were constructed in a test bed with various configurations of the heat exchange pipe inside large-diameter cast-in-place piles, that is, three parallel U-type heat exchangers (5, 8 and 10 pairs), two coil type heat exchangers (with a 500 mm and 200 mm pitch), and one S-type heat exchanger. During constructing the energy piles, the constructability of each energy pile was evaluated with consideration of the installation time, the number of workers and any difficulty for installing. In order to evaluate the thermal performance of energy piles, the thermal performance tests were carried out by applying intermittent (8 hours operating-16 hours pause) artificial cooling operation to simulate a cooling load for commercial buildings. Through the thermal performance tests, the heat exchange rates of the six energy piles were evaluated in terms of the heat exchange amount normalized with the length of energy pile and/or the length of heat exchange pipe. Finally, the economic feasibility of energy pile was evaluated according to the various types of heat exchange pipe by calculating demanded expenses per 1 W/m based on the thermal performance test results along with the market value of heat exchange pipes and labor cost.

A Case Study on the Seasonal Temperature Variations in Depth of a Vertically-installed Geothermal Heat Exchange Pipe (계절별 운전조건에 따른 수직형 지열교환기의 깊이별 지중온도 변화에 대한 사례 연구)

  • Hwang, Kwang-Il;Shin, Dong-Keol;Kim, Joong-Hun;Shin, Seung-Ho
    • Journal of the Korean Solar Energy Society
    • /
    • v.29 no.3
    • /
    • pp.45-50
    • /
    • 2009
  • To estimate the operating performances of the geothermal heat exchange pipe(GHEX), GHEXs of 400RT geothermal system were measured and analyzed through a year. The followings are the results. The temperature of 2 GHEXs installed 4m apart was fluctuated very similarly. When the geothermal system is nor operating or is operating as heating mode, the temperature of G.L.-170m was always higher than G.L.-70m's. But it reversed when the geothermal system is operating as cooling mode. And through a year, it has been observed that the temperature of G.L.-170m is increased approximately $1.5^{\circ}C$. With previously mentioned results, the heat transfer capacity of G.L.-70m's geological stratum is estimated as higher than that of the G.L.-170m.

Evaluation of Heat Exchange Rate in Horizontal Slinky and Coil Type Ground Heat Exchangers Considering Pitch Interval (피치 간격에 따른 수평 슬링키형과 코일형 지중 열교환기의 열효율 평가)

  • Yoon, Seok;Lee, Seung-Rae;Kim, Min-Jun;Kim, Woo-Jin;Go, Gyu-Hyun;Jeon, Jun-Seo
    • Journal of the Korean Geotechnical Society
    • /
    • v.30 no.7
    • /
    • pp.55-61
    • /
    • 2014
  • The need of geothermal energy is constantly increasing for economical and environmental utilization. Horizontal ground heat exchangers (GHEs) can reduce installation cost and increase efficiency. There are many kinds of GHEs, and it is known that slinky and spiral coil type GHEs show high thermal performance. Therefore, this paper presents experimental results of heat exchange rates in horizontal slinky and spiral coil type GHEs installed in a steel box whose size is $5m{\times}1m{\times}1m$. Dried Joomunjin standard sand was filled in a steel box, and thermal response tests (TRTs) were conducted for 30 hours to evaluate heat exchange rates by changing different pitch spaces of horizontal slinky and spiral coil type GHEs. As a result, spiral coil type GHE showed 30~40% higher heat exchange rates per pipe length than horizontal slinky type GHEs. Furthermore, long pitch interval (Pitch/Diameter=1) showed 200~250% higher heat exchange rates per pipe length than short pitch interval (Pitch/Diameter=0.2) in both spiral coil and horizontal slinky type GHEs, respectively.