DOI QR코드

DOI QR Code

Evaluation of Heat Exchange Rate in Horizontal Slinky and Coil Type Ground Heat Exchangers Considering Pitch Interval

피치 간격에 따른 수평 슬링키형과 코일형 지중 열교환기의 열효율 평가

  • Received : 2014.06.20
  • Accepted : 2014.07.22
  • Published : 2014.07.31

Abstract

The need of geothermal energy is constantly increasing for economical and environmental utilization. Horizontal ground heat exchangers (GHEs) can reduce installation cost and increase efficiency. There are many kinds of GHEs, and it is known that slinky and spiral coil type GHEs show high thermal performance. Therefore, this paper presents experimental results of heat exchange rates in horizontal slinky and spiral coil type GHEs installed in a steel box whose size is $5m{\times}1m{\times}1m$. Dried Joomunjin standard sand was filled in a steel box, and thermal response tests (TRTs) were conducted for 30 hours to evaluate heat exchange rates by changing different pitch spaces of horizontal slinky and spiral coil type GHEs. As a result, spiral coil type GHE showed 30~40% higher heat exchange rates per pipe length than horizontal slinky type GHEs. Furthermore, long pitch interval (Pitch/Diameter=1) showed 200~250% higher heat exchange rates per pipe length than short pitch interval (Pitch/Diameter=0.2) in both spiral coil and horizontal slinky type GHEs, respectively.

최근 들어 경제적이고 친환경적인 에너지 활용을 위하여 지열에너지 필요성이 증대되고 있다. 수평형 지중 열교환기는 설치 비용이 저렴하여 비용 대비 효율면에서 우수하다. 수평형 지중 열교환기의 타입에는 여러 가지가 있으나 이 중 슬링키형과 코일형이 우수한 것으로 알려져 있다. 따라서 본 논문에서는 $5m{\times}1m{\times}1m$ 크기의 모형 토조내에 수평 슬링키형과 코일형 지중 열교환기를 각각 설치한 후 열교환율을 실험적으로 측정하였다. 모형 토조 내에는 건조 상태의 주문진 모래가 조성되었으며 수평 슬링키형과 코일형의 피치 간격에 따라 열교환율을 측정하기 위해 30시간 동안 연속으로 열응답 시험을 실시하였다. 실험 결과 코일형 지중 열교환기 이용시 수평 슬링키형 보다 약 30, 40% 정도의 높은 파이프 단위 길이당 열교환율을 보였다. 또한 수평 슬링키형과 코일형 이용시 피치 간격이 넓을 때(피치/직경 = 1)가 좁을 때(피치/직경 = 0.2)보다 약 200, 250% 정도의 높은 파이프 단위 길이당 열교환율을 나타냈다.

Keywords

References

  1. Benazza, A., Blanco, E., Aichouba, M., Rio, J. L., and Laouedj, S. (2011), "Numerical investigation of horizontal ground coupled heat exchanger", Energy Procedia, Vol.6, pp.29-35. https://doi.org/10.1016/j.egypro.2011.05.004
  2. Brandl, H. (2006), "Energy foundations and other thermo-active ground structures", Geotechnique, Vol.56, No.2, pp.81-122. https://doi.org/10.1680/geot.2006.56.2.81
  3. Choi, J. C., Park, J. S., and Lee, S. R. (2013), "Numerical evaluation of the effects of groundwater flow on borehole heat exchanger arrays", Renewable Energy, Vol.52, pp.230-240. https://doi.org/10.1016/j.renene.2012.10.028
  4. Chong, C.S.A., Gan, G., V, A., Garcia, R. G., and Vidale, P. L. (2013), "Simulation of thermal performance of horizontal slinky-loop heat exchangers for ground heat pump", Applied Energy, Vol.104, pp.603-610. https://doi.org/10.1016/j.apenergy.2012.11.069
  5. Congedo, P.M., Colangelo, G., and Starace, G. (2012), "CFD simulation of horizontal ground heat exchangers: A comparison among different configurations", Appplied Thermal Engineering, Vol.33-34, pp.24-32. https://doi.org/10.1016/j.applthermaleng.2011.09.005
  6. Demir, H., Koyun, A., and Temir, G. (2009), "Heat transfer of horizontal parallel pipe ground heat exchanger and experimental verification", Applied Thermal Engineering, Vol.29, pp.224-233. https://doi.org/10.1016/j.applthermaleng.2008.02.027
  7. Gaia Geothermal. Ground Loop Design Software, GLD2012.
  8. Gao, J., Zhang, X., Liu, J., Li, K., and Yang, J. (2008), "Numerical and experimental assessment of thermal performance of vertical energy piles: an application", Applied Energy, Vol.85(10), pp.901-910. https://doi.org/10.1016/j.apenergy.2008.02.010
  9. Go, G. H., Lee, S. R., Yoon, S., and Kang, H. B. (2014), "Design of spiral coil PHC energy pile considering effective borehole thermal resistance and groundwater advection effects", Applied Energy, Vol.125, pp.165-178. https://doi.org/10.1016/j.apenergy.2014.03.059
  10. Johnston, I. W., Narsilio, G.A., and Colls, S. (2011), "Emerging geothermal energy technologies", KSCE Journal of Civil Engineers, Vol.15(4), pp.643-653. https://doi.org/10.1007/s12205-011-0005-7
  11. Jun, L., Xu, Z., Jun, G., and Jie, Y. (2009), "Evaluation of heat exchange rate of GHE in geothermal heat pump systems", Renewable energy, Vol.34, pp.2898-2904. https://doi.org/10.1016/j.renene.2009.04.009
  12. Laloui, L., Nuth, M., and Vulliet, L. (2006), "Experimental and numerical investigations of the behavior of a heat exchanger pile", International Journal for Numerical and Analytical Methods in Geomechanics, Vol.30, pp.763-781. https://doi.org/10.1002/nag.499
  13. Ministry of Commerce, Industry and Energy (2006), "The development of ground heat exchangers that are more efficiency and lower price".
  14. Ministry of Commerce, Industry and Energy (2007), Development of design package for ground loop heat exchanger of ground source heat pump system".
  15. Naili, N., Hazami, M., Attar, I., and Farhat, A. (2013), "In-field performance analysis of ground source cooling system with horizontal ground heat exchanger in Tunisia", Energy, Vol.61, pp.319-331. https://doi.org/10.1016/j.energy.2013.08.054
  16. Park, H., Lee, S. R., Yoon, S., Shin, H., and Lee, D. S. (2012), "Case study of heat transfer behavior of helical ground heat exchanger", Energy and Building, Vol.53, pp.137-144.
  17. Park, S. (2012), "Development and verification of ganalytical model and its solution for spiral coil type ground heat exchanger", Ph.D Thesis, KAIST.
  18. Park, S., Sohn, J. R., Park, Y. B., Ryu, H. K., and Choi, H. (2013), "Study on thermal behavior and design method for coil-type PHC energy pile", Journal of Korean Geotechnical Society, Vol.29, No.8, pp.37-51.
  19. Pulat, E., Coskun, S., Unlu, K., and Yamankaradeniz, N. (2009), "Experimental study of horizontal ground source heat pump performance for mild climate in Turkey", Energy, Vol.34, pp.1284-1295. https://doi.org/10.1016/j.energy.2009.05.001
  20. Sohn, B. (2011), "Evaluation of ground temperature and soil thermal diffusivity using the soil temperature data of KMA", Journal of the Korean Society of Geothermal Energy Engineers, Vol.7, No. 1, pp.1-9.
  21. Sohn, B., Wi, J., Park, S., Lim, J., and Choi, H. (2013), "Evaluation of conventional prediction models for soil thermal conductivity to design horizontal ground heat exchangers", Journal of Korean Geotechnical Society, Vol.29, No.2, pp.5-14. https://doi.org/10.7843/kgs.2013.29.2.5
  22. Wu, Y., Gan, G., Verhoef, A., Vidale, P.L., and Gonzalez, R.G. (2010), "Experimental measurement and numerical simulation of horizontal-coupled slinky ground source heat exchangers", Applied Thermal Engineering, Vol.30, pp.2574-2583. https://doi.org/10.1016/j.applthermaleng.2010.07.008
  23. Yoon, S., Lee, S. R., Park, H. K., Park, D. W., and Go, G. H. (2013), "Prediction of heat exchange rate in PHC energy piles", Journal of Korean Geotechnical Society, Vol. 9, No.9, pp.31-41. https://doi.org/10.7843/kgs.2013.29.9.31
  24. Yoon, S., Lee, S. R., Go, G. H., Jianfeng, X., Park, H., and Park, D. (2014), "Thermal transfer behavior in two types of W-shaped ground heat exchangers installed in multilayer soils", Geomechanics and Engineering, Vol.6, No.1, pp.79-98. https://doi.org/10.12989/gae.2014.6.1.079

Cited by

  1. Thermal performance evaluation of stainless steel pipe as a ground heat exchanger vol.2, pp.42, 2014, https://doi.org/10.3208/jgssp.atc6-01