• 제목/요약/키워드: Heat distribution

검색결과 2,939건 처리시간 0.032초

유한요소법을 이용한 하수슬러지 소각재의 인공경량골재 제조시 압출성형해석 (The Numerical Analysis of Extrusion Forming on the Manufactured Artificial Lightweight Aggregate Made of Incinerated Sewage Sludge Ash by a Finite Element Method)

  • 정병길;배진우;성낙창
    • 한국환경과학회지
    • /
    • 제16권10호
    • /
    • pp.1169-1177
    • /
    • 2007
  • The main objective of this research was to evaluate the effects of process variables which were forming ability, flow displacement, effective stress, effective strain, fluid vector and products defects on manufactured artificial lightweight aggregate made of both incinerated sewage sludge ash and clay by means of the numerical analysis of a rigid-plastic finite element method. CATIA (3D CAD program) was used for an extrusion metal mold design that was widely used in designing aircraft, automobile and metallic molds. A metal forming analysis program (ATES Co.) had a function of a rigid-plastic finite element method was used to analyze the program. The result of extrusion forming analysis indicated clearly that a shape retention of the manufactured artificial light-weight aggregate could be maintained by increasing the extrusion ratio (increasing compressive strength inside of extrusion die) and decreasing the die angle. The stress concentration of metal mold was increased by increasing an extrusion ratio, and it was higher in a junction of punch and materials, friction parts between a bottom of the punch and inside of a container, a place of die angle and a place of die of metal mold. Therefore, a heat treatment as well as a rounding treatment for stress distribution in the higher stress concentration regions were necessary to extend a lifetime of the metallic mold. A deformity of the products could have made from several factors which were a surface crack, a lack of the shape retention and a crack of inside of the products. Specially, the surface crack in the products was the most notably affected by the extrusion ratio.

Fine Structure Effect of PdCo electrocatalyst for Oxygen Reduction Reaction Activity: Based on X-ray Absorption Spectroscopy Studies with Synchrotron Beam

  • Kim, Dae-Suk;Kim, Tae-Jun;Kim, Jun-Hyuk;Zeid, E. F. Abo;Kim, Yong-Tae
    • Journal of Electrochemical Science and Technology
    • /
    • 제1권1호
    • /
    • pp.31-38
    • /
    • 2010
  • In this study, we have demonstrated the fine structure effect of PdCo electrocatalyst on oxygen reduction reaction activity with different alloy composition and heat-treatment time. In order to identify the intrinsic factors for the electrocatalytic activity, various X-ray analyses were used, including inductively coupled plasma-atomic emission spectrometer, transmission electron microscopy, X-ray diffractometer, and X-ray Absorption Spectroscopy technique. In particular, extended X-ray absorption fine structure was employed to extract the structural parameters required for understanding the atomic distribution and alloying extent, and to identify the corresponding simulated structures by using FEFF8 code and IFEFFIT software. The electrocatalytic activity of PdCo alloy nanoparticles for the oxygen reduction reaction was evaluated by using rotating disk electrode technique and correlated to the change in structural parameters. We have found that Pd-rich surface was formed on the Co core with increasing heating time over 5 hours. Such core shell structure of PdCo/C showed that a superior oxygen reduction reaction activity than pure Pd/C or alloy phase of PdCo/C electrocatalysts, because the adsorption energy of adsorbates was apparently reduced by lowering the dband center of the Pd skin due to a combination of the compressive strain effect and ligand effect.

발전기 형태를 고려한 열병합발전시스템의 배전계통 연계운전시의 순시전압변동 해석 (Analysis on Momentary Voltage Dips with the Interconnection Operation of Utility-interactive Cogneration Systems Considering Their Generator Type)

  • 최준호;김재철
    • 조명전기설비학회논문지
    • /
    • 제14권4호
    • /
    • pp.23-30
    • /
    • 2000
  • 열병합발전 시스템은 환경 친화적인 동시에 상대적으로 고 효율의 에너지 시스템으로서 분산 방전설비의 혁신 기술중 하나이다, 아울러 열병합발전 시스템운 열과 전기의 분산공급에 적절한 발전 시스템이다. 그러나, 열병합발전 시스템의 계통 연계는 전압 소정, 전압변동, 보호협조, 안전등의 제반 연제문제를 수반한다. 특히, 이러한 연계문제 중 열병합발전 시스템의 배전계통 연계.분리 운전은 배전계통의 전압조정 및 변동에 영향을 미칠 것이 예상된다. 최근 수용가 소유의 컴퓨터 및 민감한 전자소자의 사용 증가로 인하여 전력품질온 중요한 고려사항이 되고 있다. 따라서 열병합발전 시스템과 관련한 전압품질은 반드시 분석되어야만 한다. 왜냐하면 전압품질은 전력 품질의 중요한 요소이기 때문이다. 본 논문에서는 열병합발전 시스템의 배전계통 연계 운전에 따른 순서전압변통 에 대하여 컴퓨터 시물레이션을 롱하여 분석하였고、 또한 이의 억제 대책을 제시하였다. 아울러 순시전압변동 측면에서 본 피더 당 열병합발전시스템의 단위 도입 용량을 평가하였다. 본 논문의 결과는 열병합발전 시스템 또는 분산형 전원의 계통 연계 표준. 가이드라인에 유용한 자료가 되리라 믿는다.

  • PDF

Prediction of the effective thermal conductivity of microsphere insulation

  • Jin, Lingxue;Park, Jiho;Lee, Cheonkyu;Seo, Mansu;Jeong, Sangkwon
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제16권1호
    • /
    • pp.36-41
    • /
    • 2014
  • Since glass microsphere has high crush strength, low density and small particle size, it becomes alternative thermal insulation material for cryogenic systems, such as storage and transportation tank for cryogenic fluids. Although many experiments have been performed to verify the effective thermal conductivity of microsphere, prediction by calculation is still inaccurate due to the complicated geometries, including wide range of powder diameter distribution and different pore sizes. The accurate effective thermal conductivity model for microsphere is discussed in this paper. There are four mechanisms which contribute to the heat transfer of the evacuated powder: gaseous conduction ($k_g$), solid conduction ($k_s$), radiation ($k_r$) and thermal contact ($k_c$). Among these components, $k_g$ and $k_s$ were calculated by Zehner and Schlunder model (1970). Other component values for $k_c$ and $k_r$, which were obtained from experimental data under high vacuum conditions were added. In this research paper, the geometry of microsphere was simplified as a homogeneous solid sphere. The calculation results were compared with previous experimental data by R. Wawryk (1988), H. S. Kim (2010) and the experiment of this paper to show good agreement within error of 46%, 4.6% and 17 % for each result.

실험적 열적 물성치를 반영한 CCS 방열박스의 열전달 해석 (Thermal analysis of two main CCS(cargo containment system) insultaion box by using experimental thermal properties)

  • 최성웅;노정우;김무선;이우일
    • 한국전산구조공학회논문집
    • /
    • 제24권4호
    • /
    • pp.429-438
    • /
    • 2011
  • 본 논문에서는 Membrane형 LNG선의 구성 요소를 대상으로 단열창의 열적 분포를 알아보기 위해 극저온 상태에서부터 온도 별로 각 소재의 열적 물성치인 열전도도(thermal conductivity)를 실험을 통해서 알아보았다. 극저온 상태인 $-163^{\circ}C$의 온도상태로 유지되어야 하는 LNG선 화물탱크는 단열재료로 하여금 열을 차단하기 위해 많은 연구가 되어야 하는데 특히 여러 재료로 구성되어 있는 단열 화물창(CCS: Cargo containment system)은 열적 물성치가 온도에 따라 각각 어떠한 값을 가지는 것이 주요 관심대상이고, 이를 통해 전체 LNG 단열 화물창이 어떤 열적 분포를 가지는 것에 대한 연구가 필요하다. 실험을 통해 얻은 물성치를 가지고 전체 화물창의 온도분포를 정적 열해석을 통해 알아보았다. 또한 외부의 충격에 의해 LNG가 누수되었을때 2차 방벽 특히 hull 부분에서는 누수량에 대해서 어떠한 온도분포와 열적 안전성에 대해서 알아보았다.

고속도강(SKH55)과 기계구조용 탄소강(SM45C)의 마찰용접특성에 관한 연구 (A Study on the Mechanical Properties as a Result of Friction Welding With SKH55 and SM45C)

  • 최수현;민병훈;김노경;임형택;민택기
    • 한국공작기계학회논문집
    • /
    • 제17권2호
    • /
    • pp.65-70
    • /
    • 2008
  • This study deals with the friction welding of SKH55 and SM45C; The friction time was variable conditions under the conditions of spindle revolution 2,000rpm, friction pressure of 190MPa, upset pressure of 270MPa and upset time of 2.0 seconds. Under these conditions, the microstructure of weld interface, tensile fracture surface and mechanical tests were studied, and so the results were as follows. 1. When the friction time is 1.0 seconds, the tensile strength of friction welds was 926MPa, which is around as much as 84% of the tensile strength of base metal(SKH55), the bending strength of friction welds was 1,542MPa, which is around as much as 80% of the bending strength of base metal(SKH55), the shear strength of friction welds was 519MPa, which is around as much as 70% of the shear strength of base metal(SKH55). 2 According to the hardness test, the hardness distribution of the weld interface was formed from 964Hv to 254Hv. HAZ(Heat Affected Zone) was formed from the weld interface to 1.5mm of SKH55 and 2mm of SM45C.

대향류 핀삽입형 재생증발식 냉방기의 냉방성능 (Cooling Performance of a Counterflow Regenerative Evaporative Cooler with Finned Channels)

  • 문현기;이대영
    • 설비공학논문집
    • /
    • 제20권7호
    • /
    • pp.462-469
    • /
    • 2008
  • A regenerative evaporative cooler has been fabricated and tested for the evaluation of cooling performance. The regenerative evaporative cooler is a kind of indirect evaporative cooler comprised of multiple pairs of dry and wet channels. The air flowing through the dry channels is cooled without any change in the humidity and at the outlet of the dry channel a part of air is redirected to the wet channel where the evaporative cooling takes place. The regenerative evaporative cooler fabricated in this study consists of the multiple pairs of finned channels in counterflow arrangement. The fins and heat transfer plates were made of aluminum and brazed for good thermal connection. Thin porous layer coating was applied to the internal surface of the wet channel to improve surface wettability. The regenerative evaporative cooler was placed in a climate chamber and tested at various operation condition. The cooling performance is found greatly influenced by the evaporation water flow rate. To improve the cooling performance, the evaporation water flow rate needs to be minimized as far as the even distribution of the evaporation water is secured. At the inlet condition of $32^{\circ}C$ and 50%RH, the outlet temperature was measured at $22^{\circ}C$ which is well below the inlet wet-bulb temperature of $23.7^{\circ}C$.

온도변화를 수반한 비정상 난류유동장에 대한 난류모델의 적용성에 관한 연구 (A Study on Applicability of Turbulence Models for Unsteady Turbulent Flow with Temperature Variation)

  • 유근종;전원대
    • 한국추진공학회지
    • /
    • 제6권1호
    • /
    • pp.1-11
    • /
    • 2002
  • Thermal stripping을 수반한 난류유동장에 대한 해석방법론 정립에 필요한 신뢰성 있는 난류모델을 선정하기 위하여 온도변화가 있는 비정상 난류유동장에 $\kappa$-$\varepsilon$ 모델, 수정 $\kappa$-$\varepsilon$ 모델, 그리고 full Reynolds stress(FRS) 모델을 적용하였다. 검증대상으로는 thermal stripping 현상이 자주 관찰되는 원자로 혹은 추진기구부 등에서 보이는 수직평판과 수평평판에 대한 제트유동이 있는 유동장을 선정하였으며 이 때의 유체로는 물 혹은 액체나트륨을 사용하였다. 분석결과 비정상 난류유동장은 FRS를 사용하여 3-D로 해석할 때 가장 나은 결과를 얻을 수 있었다. 그러나 경계면 부근을 비롯한 유동장내에서의 열전달 특성 분석의 정확성을 제고하기 위해서는 이를 위한 수정모델의 도입이 요구된다. 아울러 제트유동의 운동량이 thermal stripping 현상에 미치는 영향을 평가하기 위하여 제트유동의 유속을 변화시켜 이에 따른 영향을 점검한 결과 운동량의 증가는 유동장의 혼합능력을 증가시키고 온도변화 진폭을 상승시키는 것으로 나타났다.

슈퍼 오스테나이트계 스테인리스강의 시그마상 특성에 따른 부식거동 분석 (Analysis of the Corrosion Behavior According to the Characteristics of Sigma Phase Formed in Super Austenitic Stainless Steel)

  • 김예은;박진성;조동민;홍승갑;김성진
    • Corrosion Science and Technology
    • /
    • 제19권4호
    • /
    • pp.203-210
    • /
    • 2020
  • The corrosion behavior of super austenitic stainless steel was studied by examining the characteristics of the sigma phase formed in the steel. A range of experimental and analytical methods was employed, including potentiodynamic polarization tests, critical pitting temperature tests, transmission electron microscopy, and energy-dispersive spectroscopy. Three steel samples with different sigma phase levels were obtained by intentionally adjusting the manufacturing process. The results showed that the corrosion resistance of the samples was strongly dependent upon the size and distribution of the sigma phase precipitated in the samples. The larger the size of the sigma phase, the higher the Mo content in the sigma phase and the higher the depletion level of Mo at the interface between the matrix/sigma phase, the more samples with a coarse-sized sigma phase were susceptible to localized pitting corrosion at the interface. These results suggest that various manufacturing processes, such as welding and the post-heat treatment of the steel, should be optimized so that both the size and fraction of the sigma phase precipitated in the steel are small to improve the resistance to localized corrosion.

역-마이셀 공정에 의한 CoAl2O4 무기안료 나노 분말의 합성 및 특성 (Synthesis and Characterization of CoAl2O4 Inorganic Pigment Nanoparticles by a Reverse Micelle Processing)

  • 손정훈;배동식
    • 한국재료학회지
    • /
    • 제24권7호
    • /
    • pp.370-374
    • /
    • 2014
  • Inorganic pigments have high thermal stability and chemical resistance at high temperature. For these reasons, they are used in clay, paints, plastic, polymers, colored glass and ceramics. $CoAl_2O_4$ nano-powder was synthesized by reverse-micelle processing the mixed precursor(consisting of $Co(NO_3)_2$ and $Al(NO_3)_3$). The $CoAl_2O_4$ was prepared by mixing an aqueous solution at a Co:Al molar ratio of 1:2. The average particle size, and the particle-size distribution, of the powders synthesized by heat treatment (at 900; 1,000; 1,100; and $1,200^{\circ}C$ for 2h) were in the range of 10-20 nm and narrow, respectively. The average size of the synthesized nano-particles increased with increasing water-to-surfactant molar ratio. The synthesized $CoAl_2O_4$ powders were characterized by X-ray diffraction analysis(XRD), field-emission scanning electron microscopy(FE-SEM) and color spectrophotometry. The intensity of X-ray diffraction of the synthesized $CoAl_2O_4$ powder, increased with increasing heating temperature. As the heating temperature increased, crystal-size of the synthesized powder particles increased. As the R-value(water/surfactant) and heating temperature increased, the color of the inorganic pigments changed from dark blue-green to cerulean blue.