Browse > Article
http://dx.doi.org/10.14773/cst.2020.19.4.203

Analysis of the Corrosion Behavior According to the Characteristics of Sigma Phase Formed in Super Austenitic Stainless Steel  

Kim, Ye Eun (Department of Advanced Materials Engineering, Sunchon National University)
Park, Jin-seong (Department of Advanced Materials Engineering, Sunchon National University)
Cho, Dong Min (Department of Advanced Materials Engineering, Sunchon National University)
Hong, Seung Gab (POSCO Technical Research Laboratories)
Kim, Sung Jin (Department of Advanced Materials Engineering, Sunchon National University)
Publication Information
Corrosion Science and Technology / v.19, no.4, 2020 , pp. 203-210 More about this Journal
Abstract
The corrosion behavior of super austenitic stainless steel was studied by examining the characteristics of the sigma phase formed in the steel. A range of experimental and analytical methods was employed, including potentiodynamic polarization tests, critical pitting temperature tests, transmission electron microscopy, and energy-dispersive spectroscopy. Three steel samples with different sigma phase levels were obtained by intentionally adjusting the manufacturing process. The results showed that the corrosion resistance of the samples was strongly dependent upon the size and distribution of the sigma phase precipitated in the samples. The larger the size of the sigma phase, the higher the Mo content in the sigma phase and the higher the depletion level of Mo at the interface between the matrix/sigma phase, the more samples with a coarse-sized sigma phase were susceptible to localized pitting corrosion at the interface. These results suggest that various manufacturing processes, such as welding and the post-heat treatment of the steel, should be optimized so that both the size and fraction of the sigma phase precipitated in the steel are small to improve the resistance to localized corrosion.
Keywords
Pitting corrosion; Sigma phase; Super austenitic stainless steel; Electrochemical corrosion; Molybdenum depletion;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 L. Adamson and N. Brown, Sulphur 2020 implementation - IMO issues additional guidance, www.imo.org (2019). http://www.imo.org/en/MediaCentre/PressBriefings/Pages/10-MEPC-74-sulphur-2020.aspx
2 H.Ulpre and I. Eames, Mar. Pollut. Bull., 88, 292 (2014). https://doi.org/10.1016/j.marpolbul.2014.08.027   DOI
3 S. Nishimura and M. Yoda, Water. Sci. Technol., 36, 349 (1997). https://doi.org/10.2166/wst.1997.0610   DOI
4 W. Heinrich, K. J. Marquardt, and A. J. Schaefer, SAE. Transactions, 95, 998 (1986). https://www.jstor.org/stable/44718176
5 M. B. Chang, H. M. Lee, F. Wu, and C. R. Lai, J. Air. Waste Manage., 54, 941 (2004). https://doi.org/10.1080/10473289.2004.10470965   DOI
6 R. Wolfson, Energy, Environment and Climate, 2nd ed., p. 435, W. W. Norton & Company, New York (2012).
7 Y. S. Zhang, X. M. Zhu, and S. H. Zhong, Corros. Sci., 46, 853 (2004). https://doi.org/10.1016/j.corsci.2003.09.002   DOI
8 C. O. A. Olsson and D. Landolt, Electrochim. Acta, 48, 1093 (2003). https://doi.org/10.1016/S0013-4686(02)00841-1   DOI
9 V. Maurice, W. P. Yang, and P. Marcus, J. Electrochem. Soc., 145, 909 (1998). https://doi.org/10.1149/1.1838366   DOI
10 A. Pardo, M. C. Merino, A. E. Coy, F. Viejo, R. Arrabal, and E. Matykina, Corros. Sci., 50, 1796 (2008). https://doi.org/10.1016/j.corsci.2008.04.005   DOI
11 G. S Jeong, I. S. Lee, and S. T. Kim, Corros. Sci. Tech., 19, 146, (2020). https://doi.org/10.14773/cst.2020.19.3.146   DOI
12 P. Sathiya, M. K. Mishra, R. Soundararajan, and B. Shanmugarajan, Opt. Laser. Technol., 45, 46 (2013). https://doi.org/10.1016/j.optlastec.2012.07.035   DOI
13 S. Heino, E. M. K. Wedel, and B. Karlsson, J. Mater. Sci. Tech., 15, 101 (1999). https://doi.org/10.1179/026708399773003376   DOI
14 J. K. Shin, H. J. Jang, K. W. Cho, and C. J. Park, Corros. Sci., 69, 364 (2013). https://doi.org/10.5006/0723   DOI
15 R. T. Loto, C. A. Loto, and I. Ohijeagbon, Results Phys., 11, 570 (2018). https://doi.org/10.1016/j.rinp.2018.09.056   DOI
16 J. B. Lee, N. Kang, J. T. Park, S. T. Ahn, Y. D. Park, I. D. Choi, K. R. Kim, and K. M. Cho, Mater. Chem. Phys., 129, 365 (2011). https://doi.org/10.1016/j.matchemphys.2011.04.026   DOI
17 A. N. Isfahany, H. Saghafian, and G. Borhani, J. Alloy. Compd., 509, 3931 (2011). https://doi.org/10.1016/j.jallcom.2010.12.174   DOI
18 S. J. Kim, S. G. Hong, and M. S. Oh, J. Mater. Res., 32, 1343 (2017). https://doi.org/10.1557/jmr.2017.65   DOI
19 Q. Chao, V. Cruz, S. Thomas, N. Birbilis, P. Collins, A. Taylor, P. D. Hodgson, and D. Fabijanic, Scripta. Mater., 141, 94 (2017). https://doi.org/10.1016/j.scriptamat.2017.07.037   DOI
20 X. Chen, J. Li, X. Cheng, H. Wang, and Z. Huang, Mater. Sci. Eng. A-Struct., 715, 307 (2018). https://doi.org/10.1016/j.msea.2017.10.002   DOI
21 H. S. Choi, S. M. Kim, H. K. Sung, S. J. Kim, and S. S. Kim, Korean. J. Met. Mater., 57, 624, (2019). http://dx.doi.org/10.3365/KJMM.2019.57.10.624   DOI
22 G. Argandona, J. F. Palacio, C. Berlanga, M. V. Biezma, P. J. Rivero, J. Pena, and R. Rodriguez, Metals, 7, 2019 (2017). https://doi.org/10.3390/met7060219
23 J. Wang, Y. Cui, J. Bai, N. Dong, Y. Liu, C. Zhang, and P. Han, Mater. Lett., 252, 60 (2019). https://doi.org/10.1016/j.matlet.2019.05.107   DOI
24 D. H. Ko and Y. T. Shin, J. Weld. Join., 36, 8, (2018). https://doi.org/10.5781/JWJ.2018.36.6.2
25 J. Bai, Y. Cui, J. Wang, N. Dong, M. S. Qurashi, H. Wei, Y. Yang, and P. Han, J. Iron Steel Res. Int., 26, 712 (2019). https://doi.org/10.1007/s42243-018-0194-0   DOI
26 ASTM G48-03, Standard Test Methods for Pitting and Crevice Corrosion Resistance of Stainless Steels and Related Alloys by Use of Ferric Chloride Solution, ASTM International (2003). http://doi.org/10.1520/G0048-03
27 ASTM G150-99, Standard Test Method for Electrochemical Critical Pitting Temperature Testing of Stainless Steels, ASTM International (2004). http://doi.org/10.1520/G0150-99R04
28 G. Rondelli, B. Vicentini, and A. Cigada, Meter. Corros., 46, 628 (1995). https://doi.org/10.1002/maco.19950461104
29 T. Rahman, W. L. Ebert, and E. Indacochea, Corros. Eng. Sci. Techn., 53, 226 (2018). https://doi.org/10.1080/1478422X.2018.1443991   DOI
30 J. Bai, Y. Cui, J. Wang, N. Dong, M. S. Qurashi, H. Wei, Y. Yang, and P. Han, Metals, 8, 497 (2018). https://doi.org/10.3390/met8070497   DOI
31 R. Marin, H. Combeau, J. Zollinger, M. Dehmas, B. Rouat, A. Lamontagne, N. Loukachenko, and L. L. Robert, Metall. Mater. Trans. A, 51, 3526 (2020). https://doi.org/10.1007/s11661-020-05794-1   DOI
32 D. C. Santos, R. Magnabosco, and C. M. Neto, Corros. Sci., 69, 900 (2013). https://doi.org/10.5006/0768   DOI
33 S. Sathiyanarayanan, C. Marikkannu, P. B. Srinivasan, and V. Muthupandi, Anti-Corros. Methods Mater., 49, 33 (2002). https://doi.org/10.1108/0003559021043584   DOI
34 J. Ding, E. H. Han, Z. Zhang, S. Wang, and J. Wang, Mater. High. Temp., 34, 78 (2017). http://doi.org/10.1080/09603409.2016.1245470   DOI
35 L. Pezzato, M. Lago, K. Brunelli, M. Breda, E. Piva, and I. Calliari, Mater. Sci. Forum, 879, 1495 (2016). https://doi.org/10.4028/www.scientific.net/MSF.879.1495   DOI
36 P. I. Marshall and T. G. Gooch, Corros. Eng., 49, 514 (1993). https://doi.org/10.5006/1.3316080   DOI
37 H. Li, Z. Jiang, H. Feng, S. Zhang, P. Han, W. Zhang, G. Li, and G. Fan, Int. J. Electrochem. Sci., 10, 4832 (2015). http://www.electrochemsci.org
38 C. C. Hsieh and W. Wu, ISRN Metall., 2012, Article ID 732471, 1 (2012). https://doi.org/10.5402/2012/732471