• Title/Summary/Keyword: Heat dissipation power

Search Result 154, Processing Time 0.031 seconds

Performance Characteristics Analysis of Evaporator in Ammonia-Water Rankine Cycle Based on Exergy and Entransy (암모니아-물 랭킨사이클의 증발기에서의 엑서지 및 엔트랜시 성능 특성 해석)

  • KIM, KYOUNG HOON;JUNG, YOUNG GUAN
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.30 no.6
    • /
    • pp.621-628
    • /
    • 2019
  • The use of the ammonia-water zeotropic mixture as a working fluid in the power generating system has been considered as a proven technology for efficient recovery of low-grade heat sources. This paper presents a thermodynamic performance analysis for ammonia-water evaporator using low-grade heat source, based on the exergy and entransy which has been recently introduced as a physical quantity to describe the heat transfer ability of an object. In the analysis, effects of the ammonia mass fraction and source temperature of the binary mixture are investigated on the system performance such as heat transfer, effectiveness, exergy destruction, entransy dissipation, and entransy dissipation based thermal resistance. The results show that the ammonia mass concentration and the source temperature have significant effects on the thermodynamic system performance of the ammonia-water evaporator.

Evaluation of Control Board and Power Board Thermal Performance (제어보드와 파워보드에 관한 발열성능 평가)

  • Jang, Sung-Cheol;Kweon, Min-Soo
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.20 no.2
    • /
    • pp.187-194
    • /
    • 2017
  • This study examined the validity and reliability of the thermal safety design, in order to maintain the heat generated from integrated circuit (IC) chips in the converter, condenser, resistor, and transistor (which are considered as heat sources for thermoelectric devices with a printed circuit board) below target levels during the process of developing a control board and a main power board. The study analyzed the heat generation and dissipation characteristics of the entire printed circuit board (PCB) model to examine its thermal safety.

3D simulation of Heat transfer in MEMS-based microchannel (MEMS 로 제작된 마이크로 채널에서의 3 차원 열전달 해석)

  • Choi, Chi-Woong;Huh, Cheol;Kim, Dong-Eok;Kim, Moo-Hwan
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.1870-1875
    • /
    • 2007
  • The microchannel heat sink is promising heat dissipation method for high heat flux source. Contrary to conventional circular channel, MEMS based microchannel had rectangular or trapezoidal cross-sectional shape. In our study, we conducted three dimensional conjugate heat transfer calculation for rectangular shape microchannel. First, we simulated that channel was completely drained with known heating power. As a result we obtained calibration line, which indicates heat loss was function of temperature. Second, we simulated single phase heat transfer with various mass flux, 100-400 $kg/m^2s$. In conclusion, the single phase test verified that the present heat loss evaluation method is applicable to micro scale heat transfer devices. Heat fluxes from each side wall shows difference due to non-uniform heating. However those ratios were correlated with supplied total heat. Finally, we proposed effective area correction factor to evaluate appropriate heat flux.

  • PDF

Thermal Dissipation Performance of a Heat Sink/Vapor Chamber Prepared by Metal Injection Molding Process

  • Chena, Bor-Yuan;Hwang, Kuen-Shyang
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.767-768
    • /
    • 2006
  • In this study, copper vapor chambers with built-in cooling fins, which eliminated the soldered or brazed joints in the conventional vapor chamber, were fabricated using the metal injection molding process. The results show that with optimized molding parameters, fins with an aspect ratio up to 18 could be produced. After sintering, the densities of the fin and chamber reached 96%. With only 32 cooling fins and a small fan installed, the thermal resistance of the heat sink was $1.156^{\circ}C/W$, and the power dissipation was 40W when the junction temperature was $70^{\circ}C$. When copper powder was sintered onto the chamber to make a vapor chamber, the thermal resistance decreased to $1.046^{\circ}C/W$.

  • PDF

Heat Transfer and Pressure Drop Characteristics of the Cold Plate for an Electric Vehicle (전기자동차용 Cold Plate의 열전달 및 압력손실 특성 연구)

  • Ham, Jin-Ki;Lee, Joon-Yeob;Song, Seok-Hyun
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.1566-1571
    • /
    • 2003
  • The cold plate used for a CEU(Control Electronics Unit) of an EV(Electric Vehicle) is extremely important since the dissipation of the heat generated from power devices like IGBT(Insulated Gate Bipolar Transistor) and diode has a significant effect on the performance as well as the durability of the CED. The cold plate consists of seven power devices, and coolant flows through the passage bonded to a groove of the cold plate. In order to find out heat transfer and pressure drop characteristics, series of numerical analyses for the cold plate with enhanced coolant passages were conducted. Based on results of the numerical analyses, an improved model of the cold plate has been proposed. The experiments under the various conditions have been conducted to compare the performance of the proposed cold plate to the present one. As a result of the numerical analyses together with the experiments, the ideal design of the cold plate could be offered.

  • PDF

Under Water Sonar Transducer Using Terfenol-D Magnetostrictive Material

  • Son, Derac;Cho, Yuk
    • Journal of Magnetics
    • /
    • v.4 no.3
    • /
    • pp.98-101
    • /
    • 1999
  • In this work we htave constructed an under water sonar transducer using Terfenol-D rod employing open magnetic circuit. Normally Sonar transducer using Terfenol-D was designed under closed magnetic flux return path, and permanent magnet for dc bias marnetic field, but high magnetic field should be applied to the transducer coil for high sound power and it brings temperature increase inside of the transducer. To improve this heat dissipation problem, we have designed an open magnetic circuit type transducer and we can get 200 dB (re. 1 Pa @ 1m) sound power for the input power of 650 VA.

  • PDF

Thermal Management on 3D Stacked IC (3차원 적층 반도체에서의 열관리)

  • Kim, Sungdong
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.22 no.2
    • /
    • pp.5-9
    • /
    • 2015
  • Thermal management becomes serious in 3D stacked IC because of higher heat flux, increased power generation, extreme hot spot, etc. In this paper, we reviewed the recent developments of thermal management for 3D stacked IC which is a promising candidate to keep Moore's law continue. According to experimental and numerical simulation results, Cu TSV affected heat dissipation in a thin chip due to its high thermal conductivity and could be used as an efficient heat dissipation path. Other parameters like bumps, gap filling material also had effects on heat transfer between stacked ICs. Thermal aware circuit design was briefly discussed as well.

The Experimental Study of Miniature Heat Pipes for Cooling Microprocessor Chips (전자칩 냉각을 위한 소형 히트 파이프에 대한 실험적 연구)

  • Lee, S.M.;Kim, H.B.;Yang, J.S.;Lee, K.B.
    • Proceedings of the KSME Conference
    • /
    • 2000.04b
    • /
    • pp.353-358
    • /
    • 2000
  • This paper presents the experimental investigation about miniature heat pipe for notebook PC. The focus of analysis is the operating temperature not to exceed $65^{\circ}C$ maximum allowable CPU surface temperature. Copper is used to heat pipe material and brass is wick material, and working fluid is selected to water. This cooling system is heat spreader method using a aluminum plate, since this method is most commonly used. According to the present study, heat for 3mm heat pipe, 8W, and for 4mm heat pipe, 10W, is found to power dissipation limit respectively, Soon after this investigation, sufficient long term life test should be followed.

  • PDF

Life Estimation of Electrolytic Capacitors for Inverters (인버터용 전해커패시터의 수명 추정)

  • Lee, Dong-Choon;Kim, Hyung-Jin
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.50 no.7
    • /
    • pp.338-346
    • /
    • 2001
  • In this paper, dc link currents for the three-phase diode rectifiers and PWM inverters are analyzed and an algorithm of estimating the life of dc link electrolytic capacitors using the analyzed ripple current is presented. Since the capacitor life is dependent on the operating temperature, the power dissipation in capacitors should be calculated. For this, the ESR(equivalent series resistance) model of the capacitor is derived and ripple currents through the capacitor are analyzed. Relating the power dissipation and the heat transfer equation, the internal operating temperature is calculated. Then, the capacitor life can be predicted by using Arrhenius's equation. An example for applications is given for the practical system.

  • PDF

Performance Characteristics of a Hybrid Air-Conditioner for Telecommunication Equipment Rooms (통신기지국용 하이브리드 냉방기의 성능특성 연구)

  • Kim, Yong-Chan;Choi, Jong-Min;Kang, Hoon;Yoon, Joon-Sang;Kim, Young-Bae;Choi, Kwang-Min;Lee, Ho-Seong
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.18 no.11
    • /
    • pp.874-880
    • /
    • 2006
  • The power density and heat dissipation rate per unit area of the telecommunication equipment have been increased with the technology development in the footprint of telecommunication hardware. A proper heat dissipation method from the PCB module is very important to allow reliable operation of its electronic component. In this study, a hybrid air-conditioner for the telecommunication equipment room was designed to save energy and obtain system reliability. For high outdoor temperatures, the hybrid system operates in the vapor compression cycle, while, for low outdoor temperatures, the hybrid system works in the secondary fluid cooling cycle with no operation of the compressor. The performance of the hybrid air-conditioner was measured by varying outdoor and indoor temperatures. The hybrid air-conditioner yielded 50% energy saving compared with the conventional refrigeration system when the mode switch temperature was $8.3^{\circ}C$.