• Title/Summary/Keyword: Heat Transfer Experiment

Search Result 742, Processing Time 0.028 seconds

Development of Cooling Design Technique for an Electronic Telecommunication System Using HPHE (히트파이프 열교환기를 이용한 전자통신 시스템의 냉각 설계기술 개발)

  • Lee, Jung-Hwan;Ryoo, Seong-Ryoul;Chun, Ji-Hwan;Kim, Jong-Man;Kim, Hyun-Jun;Kim, Chul-Ju;Suh, Myung-Won
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.31 no.4
    • /
    • pp.367-375
    • /
    • 2007
  • The purpose of this study is to investigate the cooling performance of Heat Pipe Heat Exchanger(HPHE) for an electronic telecommunication system by adequate convection condition. Heat generation rates of electronic components, the temperature distributions of HPHE and surrounding air are analyzed experimentally and numerically. In order to perform the heat transfer analysis for the thermal design of telecommunication system, a program is developed. The program is useful to a user who is not familiar with an electronic telecommunication system. The simulation results showed that the HPHE were able to achieve a cooling capacity of up to 230W at the maximum temperature difference of $17.4^{\circ}C$. To verify the results from the numerical simulation, an experiment was conducted under the same condition as the numerical simulation, and their results were compared.

Numerical Analysis on Heat Gain of Liquid from Ambient Air with Various Fin Heights and Pitches of Fin-and-Tube Heat Exchanger in Hybrid Solar Collector (핀-튜브 열교환 구조를 갖는 복합집열기에서 핀 높이 및 간격에 따른 공기열 이용 액체 가열 성능에 관한 수치해석 연구)

  • Choi, Hwi-Ung;Fatkhur, Rokhman;Lyu, Nam-Jin;Yoon, Jung-In;Son, Chang-Hyo;Choi, Kwang-Hwan
    • Journal of the Korean Solar Energy Society
    • /
    • v.36 no.3
    • /
    • pp.53-61
    • /
    • 2016
  • Solar assisted heat pump system uses solar thermal energy as a heat source of evaporator of heat pump. So, COP can be enhanced as well as collector efficiency. For improving performance of this system, some research about hybrid solar collector that has fin-and-tube heat exchanger has been conducted. This collector can get a thermal energy from ambient air for liquid heating, so heated liquid can be used as a heat source of evaporator in heat pump even the solar radiation is not enough. In this study, numerical analysis was conducted for confirming heat gain of liquid according to fin height and pitch of fin-and-tube heat exchanger in collector. As a result, higher heat gain was obtained on lower fin height and narrow fin pitch, but the pressure drop also increased with increment of heat gain. Thus the JF factor considering both heat transfer enhancement and pressure drop was investigated and the maximum value was shown when the fin height and pitch were 40mm and 45mm. So it is considered that this installation condition has a highest heat transfer improvement when comparing with pressure drop. However heat gain of liquid at this condition was less than the other installation conditions of fin pitch on same height. Then, after establishing a proper minimum heat gain of liquid, actual production and experiment of collector will be conducted with fin height and pitch showing maximum JF factor and satisfying selected minimum heat gain of liquid on the basis of results of this study.

Cooling characteristics of the multichip module using paraffin slurry (파라핀 슬러리를 사용한 다칩모듈의 냉각특성)

  • Jo, Geum-Nam;Choe, Min-Gu
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.22 no.6
    • /
    • pp.888-898
    • /
    • 1998
  • The present study investigated the effects of the experimental parameters on the cooling characteristics of the multichip module cooled by the indirect liquid cooling method using water and paraffin slurry. The experimental parameters are mass fraction of 2.5 ~ 7.5% for paraffin slurry, heat flux of 10 ~ 40 W/cm$^{2}$ for the simulated VLSI chips and Reynolds numbers of 5,300 ~ 15,900. The apparatus consisted of test section, paraffin slurry maker, pump, constant temperature baths, flowmeter, etc. The test section made of in-line, four-row array of 12 heat sources for simulating 4 * 3 multichip module which was flush mounted on the top wall of a horizontal rectangular channel with the aspect ratio of 0.2. The inlet temperature was 20 deg. C for all experiments. The size of paraffin slurry was constant as 10 ~ 40 .mu.m befor and after the experiment. The chip surface temperatures for paraffin slurry with the mass fraction of 7.5% showed lower by 16 deg. C than those for water when the heat flux is 40 W/cm$^{2}$. The local heat transfer coefficients for the paraffin slurry with the mass fraction of 7.5% were larger by 17 ~ 25% than those for water at the first and the fourth row. The local heat transfer coefficients reached to a row-number-independent, thermally fully developed value approximately after the third row. The local Nusselt numbers at the fourth row for paraffin slurry with the mass fraction of 7.5% were larger by 23 ~ 29% than those for water.

An Experimental Study on the Heat Transfer Characteristics of Stainless-Acetone Heat Pipe (스테인리스-아세톤 히트파이프의 열전달 특성에 관한 실험적 연구)

  • Kang, K. C.;Kim, Y. J.;Ryou, Y. S.;Baek, Y.;Rhee, K. J.
    • Journal of Biosystems Engineering
    • /
    • v.25 no.6
    • /
    • pp.489-496
    • /
    • 2000
  • This study was conducted in order to find an ideal working fluid kind and a proper filling amount in the heat pipe as well as an inclined angle of heat pipe when they are placed to recover exhaust gas heat in the hot air heater. Followings are the findings of this research. 1. Of the four different working fluids-gasoline kerosene distilled water and acetone-acetone filled heat pipe showed the best performance giving out more homogeneous temperature profile on the radiating part than the kerosene and gasoline heat pipe an carrying out heat transmitting function better than the distilled water heat pipe by 10~2$0^{\circ}C$ higher on the radiating part. Acetone would be a good choice for recycling of exhaust gas heat in the hot air heater. 2. Of the filling amount of working fluid inside the heat pipes dry-out situations possible caused by insufficient filling were found in the filling amount of 5, 7.5 and 10% heat pipes as heat supply rate increases gradually in the range of 50 to 15kJ/sec. but no dry-out and stabilized heat transmitting performance occurred in the heat pipes of 12.5 and 15% filling at the same heat supply rate. It recommends that filling amount shall exceed 12.5% at least with the working fluids of this experiment. 3. The test revealed that the heat transmitting performance of heat pipe was more affected by filling amount rather than inclined angle.

  • PDF

A Numerical Study on the Effect of a Microfin with a Flexible Up-down Movement on Heat Transfer using a Fluid-structure Interaction (FSI) Method (양방향 유체-고체 연성해석을 통한 표면 위 미세날개의 진동이 열전달에 미치는 영향 분석)

  • Park, Ki-Hong;Min, June-Kee;Kim, Jin-Kyu;Kang, Seok-Hoon;Kim, Seong-Jin;Park, Sang-Hu
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.8
    • /
    • pp.975-983
    • /
    • 2011
  • A microfin on a heated surface and its effects of the heat transfer has been investigated. The thickness of the fin is about 8 micrometer to allow the flexible up-down motion of the fin. Two-way complete FSI (Fluid-Structure Interaction) method has been applied for the analysis. Firstly, the deformation of a microfin due to the pulsating flow is evaluated using structure analysis. The flow and temperature patterns are predicted by CFD (Computational Fluid Dynamics) method. At each time step, using the pressure force and temperature distribution from CFD, the deformation of the wing is evaluated by FEM. Also in order to estimate the resonance probability, the natural frequency of the wing structure is calculated by modal analysis. The proposed numerical procedure was validated through experiment using a single fin. Through this work, we show that the increase of 40% in heat transfer capacity using the microfin has been compared with that of flat plate case.

Vibration Pattern Prediction through The Analysis on the Break-up Mode and the Heat Transfer Relationship of Slim Speaker Diaphragm (슬림 스피커 진동판의 분할진동 모드와 열전달 관계 분석을 통한 진동 패턴 예측)

  • Kim, Hyun-Kab;Kim, Hiesik
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.53 no.10
    • /
    • pp.109-115
    • /
    • 2016
  • In this paper, In this paper, we use two methods to compare the slim speakers. That way, the diaphragm scan using laser and diaphragm photographed using a thermal imaging camera. Slim speaker has the structure of a flat plate type. Break-up mode by this characteristic is displayed in a larger size. Further, since the installation space is narrow, it has limited moving coil cooling. As a result, the break-up mode slim speakers, a significant impact on quality. In this study, try to connect the break-up mode of the diaphragm, the heat transfer mode of the diaphragm. Experiment for comparison, a two-step. The first step is to measure the divided vibration through the vibration plate scan. The second step measures the diaphragm photographed using a thermal imaging camera. Then, compare the results of both of the same frequency. Thus, comparing the heat transfer pattern and the pattern of break-up mode. Tend to be analysis of break-up mode from the pattern comparison, and document for the optimum design.

Experimental Study on the Hydrophilic Porous Film Coating for Evaporative Cooling Enhancement

  • Lee, Dae-Young;Lee, Jae-Wan;Kang, Byung-Ha
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.13 no.2
    • /
    • pp.99-106
    • /
    • 2005
  • Falling film heat transfer has been widely used in many applications in which heat and mass transfer occur simultaneously, such as evaporative coolers, cooling towers, absorption chillers, etc. In such cases, it is desirable that the falling film spreads widely on the surface to form a thin liquid film to enlarge contact surface and to reduce the thermal resistance across the film and/or the flow resistance to the vapor stream over the film. In this respect, hydrophilic treatment of the surface has been tried to improve the surface wettability by decreasing the contact angle between the liquid and the surface. However, the hydrophilic treatment was found not very effective to increase the surface wettedness of inclined surfaces, since the liquid flow forms rivulet patterns instead of a thin film as it flows down the inclined surface and accelerates gradually by the gravity. In this work, a novel method is suggested to improve the surface wettedness enormously. In this work, the surface is treated to have a thin hydrophilic porous layer on the surface. With this treatment, the liquid can spread widely on the surface by the capillary force resulting from the porous structure. In addition to this, the liquid can be held within the porous structure to improve surface wettedness regardless of the surface inclination. The experiment on the evaporative cooling of inclined surfaces has been conducted to verify the effectiveness of the surface treatment. It is measured that the latent heat transfer increases almost by $80\%$ at the hydrophilic porous layer coated surface as compared with the untreated surface.

Measurement of the local heat transfer coefficient on a convex hemispherical surface with round oblique impinging jet (볼록한 표면위에 분사되는 원형경사충돌제트의 국소열전달계수 측정에 관한 연구)

  • 최형철;이세균;이상훈;임경빈
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.11 no.6
    • /
    • pp.846-854
    • /
    • 1999
  • Measurements of the local heat transfer coefficients were made on a hemispherically convex surface with a round oblique impinging jet. The liquid crystal transient method was used for these measurements. This method, which is a variation on the transient method, suddenly exposes a preheated wall to an impinging jet while video recording the response of liquid crystal for the surface temperature measurements. The Reynolds number used was 23000 and the nozzle-to-surface distance was L/d=2, 4, 6, 8, and 10 and the jet angle was $\alpha$=$0^{\circ}\; 15^{\circ}\;30^{\circ}C\; and \;40^{\circ}C$. In the experiment, the Nusselt number at the stagnation point decreases as the jet angle increases and has the maximum value for L/d=6. The X-axis Nusselt number distributions exhibit Secondary maxima at $0^{\circ}C\re $\alpha$\re 15^{\circ}C, L/d\le6$ for X/d<0(upstream) and at $0^{\circ}C\re $\alpha$40^{\circ}C,\;L/d\le4\;and\; at\; 30^{\circ}C\re $\alpha$$\leq$40^{\circ}C,\;L/d\le 6 $for X/d>0(downstream). The secondary maxima occurs at long distance from the stagnation point as the jet angle increases or the nozzle-to-surface distance decreases. The Y-axis Nusselt number distributions exhibit secondary maxima at Y/d=$\pm$2 for $0^{\circ}C\le a\le30^{\circ}C\; and\; L/d\le4, and \;for\;$\alpha$=40^{\circ}C$and L/d=2. The displacement of the maximum Nusselt number from the stagnation point increases as the jet angle increases or the nozzle-to-surface distance decreases and the maximum distance is about 0.67 times of the nozzle diameter. The ratio of the maximum Nusselt number to the stagnation Nusselt number increases as the jet angle increases.

  • PDF

Honeycomb and Laminated Mesh as Open Volumetric Solar Receiver : Performance of Heat Transfer and Pressure Drop (고온 태양열 공기식 흡수기의 충진재 변화에 따른 열전달 및 압력강하 성능 분석)

  • Cho, Ja-Hyun;Lee, Ju-Han;Kang, Kyung-Mun;Seo, Tae-Beom
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.20 no.11
    • /
    • pp.760-766
    • /
    • 2008
  • The characteristics of heat transfer and pressure drop of several different porous materials which can be used as inserts inside solar volumetric air receivers were experimentally investigated. Generally, porous materials were inserted into solar volumetric air receivers to increase the thermal performance. In the present work, honeycomb (diameter: 100 mm, thickness: 30 mm), laminated mesh (diameter: 100 mm, thickness: 1 mm) are considered as the inserts for the experiment. The experimental apparatus consists mainly of a cylindrical ceramic duct as a receiver and an electric heater as an energy source. This system is an intake open loop, which used as air of working fluid. The temperatures inside the ceramic tube are measured by thermocouples, which are installed at each layer of the porous materials. The pressure-drop experimental apparatus is fabricated alike the above experimental equipment. An acrylic tube is used like as the ceramic tube, which has the same specifications of the ceramic tube. The pressure drop of porous materials inserted in the acrylic tube is measured between front and rear of those by transmitter. The results show that the laminated mesh surpasses the honeycomb of heat transfer and pressure drop increase as the porous material thickness and Reynolds number.

Study on the Characteristics of Scroll type Stirling Engine Receiver for Solar Thermal Power (태양열 발전용 스크롤 방식 스터링엔진 흡수기 특성 연구)

  • Seo, Ho-Young;Kim, Jong-Kyu;Lee, Sang-Nam;Kang, Yong-Heack
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.62-67
    • /
    • 2009
  • This paper describes the characteristics of scroll type stirling engine receiver. Scroll type stirling engine operated scroll compressor and expander instead of piston. Pass dimension of the receiver was $14(W){\times}14(H)$ mm and total pass length was 5,049 mm. External dimension of the receiver was $300{\times}300mm$. The experimental facility consisted of parabolic dish concentrator, compressor to supply air, triplex air filter, and flowmeter. In this study, basic experimental conditions were set at a inlet pressure of 5 bar and volume flow rate of $25m^3/hr$. As a result, air temperature in receiver at each measuring position of point 1, 2, 3 were $241^{\circ}C$, $465^{\circ}C$, and $542^{\circ}C$ respectively at inlet pressure of 5.5 bar and volume flow rate of $24.6m^3/hr$. As DNI increasing, heat transfer coefficient of the receiver changed from $695W/m^2K$ to $827W/m^2K$. Average heat transfer coefficient of receiver in the experiment was $798W/m^2K$. In addition, receiver efficiency became about 83%.

  • PDF