• 제목/요약/키워드: Heat Transfer Block

검색결과 104건 처리시간 0.03초

표면거칠기 효과에 따른 스프레이 냉각의 열전달 향상 연구 (Heat Transfer Enhancement of Water Spray Cooling by the Surface Roughness Effect)

  • 이정호
    • 대한기계학회논문집B
    • /
    • 제34권2호
    • /
    • pp.203-212
    • /
    • 2010
  • 수분류 스프레이 냉각은 많은 산업적인 응용분야에 넓게 사용되고 있다. 본 연구는 수분류 스프레이가 표면거칠기가 주어진 $900^{\circ}C$ 고온강판의 표면에 충돌하는 경우, 열유속 및 열전달계수의 정량적인 측정을 통해 표면거칠기가 수분류 스프레이 냉각에 미치는 영향을 고찰하였다. 이 때의 국소 열유속은 시편, 카트리지히터, 열전대의 조합으로 고안된 고유의 열유속게이지를 제작하여 엄밀하게 측정되었다. 평균 표면거칠기 높이를 기준으로 40, 60, $80{\mu}M$의 3 가지 표면과 매끈한 표면에 대한 수분류 스프레이 냉각 의 열전달 현상이 비교 및 평가되었다. 표면거칠기가 주어진 표면에서의 돌출물은 얇은 열 경계층두께를 통과할 수 있기 때문에 표면거칠기가 주어진 경우에 열전달은 뚜렷하게 증가하였고, 표면거칠기의 의한 열전달 향상 기구는 서로 다른 비등영역에 대해 구분하여 조사되었다.

Numerical Simulation of the Aluminum Alloys Solidification in Complex Geometries

  • Monteiro Eliseu;Rouboa Abel
    • Journal of Mechanical Science and Technology
    • /
    • 제19권9호
    • /
    • pp.1773-1780
    • /
    • 2005
  • The process of mould design in the foundry industry has been based on the intuition and experience of foundry engineers and designers. To bring the industry to a more scientific basis the design process should be integrated with scientific analysis such as heat transfer. The production by foundry techniques is influenced by the geometry configuration, which affects the solidification conditions and subsequent cooling. Numerical simulation and/or experiments make possible the selection of adequate materials, reducing cycle times and minimizing production costs. The main propose of this work is to study the heat transfer phenomena in the mould considering the phase change of the cast-part. Due to complex geometry of the mould, a block unstructured grid and a generalized curvilinear formulation engaged with the finite volume method is described and applied. Two types of boundary conditions, diffusive and Newtonian, are used and compared. The developed numerical code is tested in real case and the main results are compared with experimental data. The results showed that the solidification time is about 6 seconds for diffusive boundary conditions and 14.8 seconds for Newtonian boundary conditions. The use of the block unstructured grid in combination with a generalized curvilinear formulation works well with the finite volume method and allows the development of more efficient algorithms with better capacity to describe the part contours through a lesser number of elements.

냉각수 온도에 따른 수분류 충돌제트의 열전달 특성 연구 (Effect of Cooling Water Temperature on Heat Transfer Characteristics of Water Impinging Jet)

  • 이정호;유청환;도규형
    • 열처리공학회지
    • /
    • 제23권5호
    • /
    • pp.249-256
    • /
    • 2010
  • Water jet impingement cooling has been widely used in a various engineering applications; especially in cooling of hot steel plate of steelmaking processes and heat treatment in hot metals as an effective method of removing high heat flux. The effects of cooling water temperature on water jet impingement cooling are primarily investigated for hot steel plate cooling applications in this study. The local heat flux measurements are introduced by a novel experimental technique that has a function of high-temperature heat flux gauge in which test block assemblies are used to measure the heat flux distribution during water jet impingement cooling. The experiments are performed at fixed flow rate and fixed nozzle-to-target spacing. The results show that effects of cooling water temperature on the characteristics of jet impingement heat transfer are presented for five different water temperatures ranged from 5 to $45^{\circ}C$. The local heat flux curves and heat transfer coefficients are also provided with respect to different boiling regimes.

An Experimental Study on Improved Fuel Economy and Lower Exhaust Emissions of New Automotive Engine adopting Split Cooling System

  • Oh, C.S.;Lee, J.H.;Shin, S.Y.;Kim, W.T.
    • 한국윤활학회:학술대회논문집
    • /
    • 한국윤활학회 2002년도 proceedings of the second asia international conference on tribology
    • /
    • pp.407-408
    • /
    • 2002
  • This paper presents a split cooling system for a new inline 4-cylinder automotive engine. The split cooling system circulates coolant to the cylinder head and cylinder block separately. The coolant flow in the cylinder block is controlled by a $2^{nd}$ Thermostat installed at the outlet of cylinder block. The $2^{nd}$ thermostat closes when the coolant temperature is low. And this makes the coolant flow in cylinder block nearly stagnant, thereby reducing the coolant-side heat transfer coefficient and raising cylinder bore temperature. The $2^{nd}$ thermostat starts to open when the coolant temperature reaches a specified temperature. The test results on engine dynamometer show improved fuel economy and lower exhaust emission which result from the decrease in friction works and cooling loss. Also, several vehicle tests, with application of the new engine have been performed. Fuel economy improvement of 0.5{\sim}2.0%$ yields from different test modes and details are discussed in this paper.

  • PDF

사각 핀이 설치된 오목충돌면에서 배열충돌제트의 국소 열전달 특성 고찰 (Heat Transfer of Array Impinging Jet on Concave Surfaces with Rectangular Fin)

  • 오상현;이원희;이동현;조형희;김문영;이성호
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2008년도 하계학술발표대회 논문집
    • /
    • pp.1149-1154
    • /
    • 2008
  • The present study investigates the heat transfer characteristics on concave surface with array impinging jet and fin arrangement. The heat transfer coefficients was measured by TLC method. The Reynolds number based on jet hole diameter is 10,000 and hole diameter-to-plate distance ratio (H/d) is fixed at 2. The rectangular fins are installed in the curved channel and the width of fin varies from 1d to 3d. Without fins, the averaged heat transfer coefficients decreases as moves downstream region. While, the rectangular fins block the crossflow and higher heat transfer rates were observed compared to smooth channel.

  • PDF

Numerical Study on the Thermal Characteristics of the Various Cooling Methods in Electronic Equipment

  • Son, Young-Seok;Shin, Jee-Young
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제28권1호
    • /
    • pp.46-55
    • /
    • 2004
  • Thermal characteristics of the various cooling methods in electronic equipment are studied numerically. A common chip cooling system is modeled as a parallel channel with protruding heat sources. A two-dimensional model has been developed for the numerical analysis of compressible. viscous. laminar flow. and conjugate heat transfer between parallel plates with uniform block heat sources. The finite volume method is used to solve this problem. The assembly consists of two channels formed by two covers and one printed circuit board that is assumed to have three uniform heat source blocks. Various cooling methods are considered to find out the efficient cooling method in a given geometry and heat sources. The velocity and the temperature fields. the local temperature distribution along the surface of blocks. and the maximum temperature in each block are obtained. The results are compared to examine the thermal characteristics of the different cooling methods both quantitatively and qualitatively.

전동차용 견인전동기의 열유동 특성에 관한 전산해석 (Numerical Analysis on Heat Transfer and Fluid Flow Characteristics of Traction Motor for Electric Car)

  • 남성원;김영남;채준희
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 1998년도 추계학술대회 논문집
    • /
    • pp.137-143
    • /
    • 1998
  • Numerical simulation is conducted to clarify the heat transfer and fluid flow characteristics of traction motor for electric car SIMPLE algorithm based on finite volume method is used to make linear algebra equation. The governing equations are solved by TDMA(TriDiagonal Matrix Algorithm) with line-by-line method and block correction. From the results of simulation, the characteristics of cooling pattern is strongly affected by the size of hole in stator core. In the case of high rotational speed of rotor, temperature difference along the axial direction is more decreased than that of low rotational speed.

  • PDF

개구부가 있는 밀폐공간내 화재의 복합열전달 및 연소가스 분석에 관한 연구 (A Study on the Combined Heat Transfer and Analysis Fire Induced Combustion Gas in a partially Open Enclosure)

  • 박찬국;추병길;김철
    • 한국화재소방학회논문지
    • /
    • 제11권1호
    • /
    • pp.21-35
    • /
    • 1997
  • The natural convection and combined heat transfer induced by fire in a rectangular enclosure is numerically studied. The model for this numerical analysis is partially opened right wall. The solution procedure includes the standard k-$\varepsilon$ model for turbulent flow and the discrete ordinates method (DOM) is used for the calculation of radiative heat transfer equation. In numerical study, SIMPLE algorithm is applied for fluid flow analysis, and the investigations of combustion gas induced by fire is performed by FAST model of HAZARD I program. In this study, numerical simulation on the combined naturnal convection and radiation is carried out in a partial enclosure filled with absorbed-emitted gray media, but is not considered scattering problem. The streamlines, isothermal lines, average radiation intensity and kinetic energy are compared the results of pure convection with those of the combined convection-radiation, the combined heat transfer. Comparing the results of pure convection with those of the combined convection-radiation, the combined heat transfer analysis shows the stronger circulation than those of the pure convection. Three different locations of heat source are considered to observe the effect of heat source location on the heat transfer phenomena. As the results, the circulation and the heat transfer in the left region from heating block are much more influenced than those in the right region. It is also founded that the radiation effect cannot be neglected in analyzing the building in fire. And as the results of combustion gas analysis from FAST model, it is found that O2 concentration is decreased according to time. While CO and CO2 concentration are rapidly increased in the beginning(about 100sec), but slowly decreased from that time on.

  • PDF

에너지 축열보드 열해석을 위한 컴퓨터 수치해석 (Computer Simulation for the Thermal Analysis of the Energy Storage Board)

  • 강용혁;엄태인;곽희열
    • 에너지공학
    • /
    • 제8권2호
    • /
    • pp.224-232
    • /
    • 1999
  • 캡슐형 잠열재를 이용한 열저장 시스템은 바닥 난방 및 건물 난방에서 매우 효과적인 시스템이다. 이러한 시스템 개발에 필수적인 요소가 열유동 매체가 순환하는 파이프 주변의 캡슐내 온도 분포와 열유동 매체의 유량 등이다. 그러므로 본 연구에서는 3차원 비정상 상태에서 Navier-Stokes 방정식, 난류모델을 비롯한 스칼라 보존 방정식을 적용하여 캡슐 블록의 온도 분포 및 파이프 내의 유동장 해석을 수행하였다. 또한 본 연구와 같이 계산 영역이 특별한 기하학적 현상을 형상(circle+square)인 문제 해결하는데 적용할 수 있는 새로운 격자 생성 기술(MBFGE/CCM)을 개발하였다. 격자계는 파이프에서 원형 격자를 이용하였고, 캡슐 블록에서 사각 격자를 이용하여 다중격자와 미세격자를 결합하여 사용하였다. 본 연구의 목적은 컴퓨터를 이용한 수치해석적 방법을 미세 캡슐을 이용한 축열보드에 적용하여 2종류의 열경계 상태에 대하여 속도와 온도분포를 계산하여 비교분석을 하는 것이다. 온도는 축열 보드의 한 쪽면은 대류면이고 다른 한쪽면은 단열면인 경우(Case 2)보다 양면 모두 단열인 경우(Case 1)일 때 더 높게 상승하였다. 온수 파이프 중심선인 Y=0 에 가까운 영역에서 Case 1과 Case 2사이에 축열 보드 내에서 온도 차이는 확연하게 나타났다. 향후 수치해석의 정확도를 높이고 축열 보드의 열전달 현상을 보다 정확히 계산하기 위해서는 위치 및 시간에 따른 정밀한 온도 측정값이 필요하고 특히 잠열재인 미세 캡슐이 상변화를 하므로 온도 변화에 따른 물질의 비열(C$_{p}$)과 열전달율(λ)을 고려한 방정식이 요구된다.

  • PDF

엔진 헤드 개스킷 강건 설계 (Robust Design of Engine Head Gasket)

  • 이승우;양철호
    • 한국자동차공학회논문집
    • /
    • 제24권4호
    • /
    • pp.416-424
    • /
    • 2016
  • A robust design of head gasket is pursued by using FEA model of engine assembly. Engine assembly model consists of cylinder head, block, gasket, and head bolt is constructed to understand a complex behavior of this engine compound. Thermal loading is performed on the assembled engine cylinder and block to obtain temperature field. Firing load is added to the results of heat transfer analysis to simulate the engine operation condition. Temperature filed results from heat transfer analysis are mapped into the structural mesh. Contact pressure distribution along the bead has been monitored for the engine operation condition. Based on the results obtained from the analysis, Taguchi method has been adopted for a robust design process of head gasket. Among the control factors, bolt size affects most robustness of head gasket sealing.