• Title/Summary/Keyword: Heat Transfer

Search Result 7,620, Processing Time 0.036 seconds

Effects of PEG on Embryo Production in Superovulated Hostein Cows (젖소 과배란 처리시 PEG(Polyethylene Glycol) 처리가 수정란 생산에 미치는 영향)

  • Choi S. H.;Ryu I. S.;Han M. H.;Cho S. R.;Choe C. Y.;Kim H. J.;Son D. S.;Kim Y. K.;Lee J. W.
    • Journal of Embryo Transfer
    • /
    • v.20 no.3
    • /
    • pp.317-322
    • /
    • 2005
  • This study was conducted to improve the efficiency of embryo recovery and to establish the protocols of superovulation in Holstein cows. Sixteen Holstein cows were used the test the efficacy of three superovulation regimens using Folltropin. In the case of regimen 1, CIDR plus with E2 capsule was inserted in cows at the random stage of estrous cycle and the total of 400 mg Folltropin V was adminstered twice a day for 4 days(Folltropin V group). In regimen 2, CIDR was inserted and 3.0 mg estradiol benzoate was administered i.m. next day and the total of 400 mg Folltropin was adminstered twice a day for 4 days(Folltropin V+EB group). For regimen 3, CIDR insertion was same as in the regimen 2 and the total of 400 mg Folltropin diluted with $10\%$ PEG 8,000 was administered once(Folttropin V+PEG 8,000 group). In all the regimens, CIDR were removed on 12th day and 45 mg dinoprost was administered i.m. simultaneously. The heat detected donors were administered 200 ug LH-RH and inseminated twice with 2 straws of frozen semen 12 hours apart. Embryo were collected using Foley catherter in each uterine homs on 6${\~}$8 days after inseminations. The evaluation of collected embryos were according to the IETS manual. The CL responses according to the superovulation treatments were 5.8, 20.6, 24.0 in the Folltropin V, Folltropin+EB and Folltropin V+PE 8,000 groups, respectively and there were significant different among the treatments(p<0.01). Transferable embyos collected were 3.6$\pm$2.4, 3.3$\pm$l.8 and 2.8$\pm$2.3, in the Folltropin V, Folltropin+EB and Folltropin V+PE 8,000 groups, respectively. Degenerated and unfertilized embryos in regimen 2 and 3 than regimen 1. These results indicates that superovulation treatments with both multiple injections and a single injection using PEG of Folltropin combined with CIDR insertion at the random stage of estrus cycle can be used to produce Holstein embryos.

Relationship between HSP70 Gene Polymorphisms and IVF Embryo Development in Pigs (돼지에서 HSP70 유전자형과 IVF 수정란 배 발달과의 관련성)

  • Jin H. J.;Kim I. C.;Wee M. S.;Yeon S. H.;Kim C. D.;Cho C. Y.;Choi S. H.;Cho S. R.;Son D. S.;Kim Y. K.;Jung J. H.;Choi H. S.;Park C. K.
    • Journal of Embryo Transfer
    • /
    • v.20 no.3
    • /
    • pp.289-295
    • /
    • 2005
  • This study was performed to investigate the relationship between Heat shock protein 70 (HSP70) gene polymorphism and in vitro fertilization(IVF) embryo development in the pigs. The single strand conformation polymorphism(SSCP) genotypes from HSP70 K1, K3 and K4 PCR products were detected different patterns. In cleavage rate of oocyte fertilized in vitro, HSP70 K1-AA genotype($73.1\%$) and K1-AB genotype($62.3\%$) showed significantly higher oocyte cleavage rate than HSP70 K1-BB genotype($49.3\%$)(p<0.05). And HSP70 K3-AA genotype ($72.4\%$) and K3-AB($62.2\%$) also showed significantly higher oocyte cleavage rate than HSP70 K3-BB genotype($49.1\%$)(p<0.05). The IVF embryo development of 2-cell stage according to HSP70 genotypes of sperm and pig breeds also showed a significant difference. The number of embryos developed to 2-cell stage in Landrace(28.8) and Duroc(29.8) were significantly higher than in Yorkshire(10.9)(p<0.05). And also HSP70 K4-AB genotype group(29.6) higher than HSP70 K4-AA genotype group(10.6)(p<0.05). However, the number of embryos developed to blastocyst stage did not showed significant differences among breeds as well as HSP70 genotypes. These resrults suggest that in vitro development in porcine early embryos may be affected by HSP70 genotypes and breeds.

Improvement in Antagonistic Ablility of Antagonistic Bacterium Bacillus sp. SH14 by Transfer of the Urease Gene. (Urease gene의 전이에 의한 길항세균 Bacillus sp. SH14의 길항능력 증가)

  • 최종규;김상달
    • Microbiology and Biotechnology Letters
    • /
    • v.26 no.2
    • /
    • pp.122-129
    • /
    • 1998
  • It were reported that antifungal mechanism of Enterobacter cloacae is a volatile ammonia that produced by the strain in soil, and the production of ammonia is related to the bacterial urease activity. A powerful bacterium SH14 against soil-borne pathogen Fusarium solani, which cause root rot of many important crops, was selected from a ginseng pathogen suppressive soil. The strain SH14 was identified as Bacillus subtilis by cultural, biochemical, morphological method, and $API^{circledR}$ test. From several in vitro tests, the antifungal substance that is produced from B. subtilis SH14 was revealed as heat-stable and low-molecular weight antibiotic substance. In order to construct the multifunctional biocontrol agent, the urease gene of Bacillus pasteurii which can produce pathogenes-suppressive ammonia transferred into antifungal bacterium. First, a partial BamH I digestion fragment of plasmid pBU11 containing the alkalophilic B. pasteurii l1859 urease gene was inserted into the BamH I site of pEB203 and expressed in Escherichia coli JM109. The recombinant plasmid was designated as pGU366. The plasmid pGU366 containing urease gene was introduced into the B. subtilis SH14 with PEG-induced protoplast transformation (PIP) method. The urease gene was very stably expressed in the transformant of B. subtilis SH14. Also, the optimal conditions for transformation were established and the highest transformation frequency was obtained by treatment of lysozyme for 90 min, and then addition of 1.5 ${mu}g$/ml DNA and 40% PEG4000. From the in vitro antifungal test against F. solani, antifungal activity of B. subtilis SH14(pGu366) containing urease gene was much higher than that of the host strain. Genetical development of B. subtilis SH14 by transfer of urease gene can be responsible for enhanced biocontrol efficacy with its antibiotic action.

  • PDF

Genetic Analyses of Heading and Maturing Dates and Their Relationship to Freezing Resistance in Barley (보리 출수기와 성숙기의 유전분석 및 내동성과의 관계)

  • 천종은;강석원
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.47 no.6
    • /
    • pp.395-401
    • /
    • 2002
  • The combination of early heading time, maturing time and short grain-filling period is very important to develop early varieties in winter barley. The 4 parental half diallel crosses (parents, $F_1$s, $F_2$s) were cultivated at the field. The heading date was from April 3 to 26, maturing date from May 15 to 27 and grain-filling period from 31 days to 42 days, showing that the varietal differences about the 3 traits were remarkable. According to half diallel cross analyses, Dongbori 1 for heading time (late heading) was dominant, but Oweolbori (early heading) was recessive, showing partial dominance with high additive component of genetic variance. Dongbori 1 for maturing time was dominant, but Oweolbori was recessive, showing partial dominance with high additive variance. Reno for grain-filling period (short grain-filling period) was dominant, but Oweolbori (long grain-filling period) was recessive with additive, and partial dominance. There were highly significant mean squares for both GCA and SCA effects on the heading and maturing times, and GCA/SCA ratios for all traits were high, showing the additive gene effects more important. Sacheon 6 and Oweolbori had greater GCA effects for early heading and maturing times, and Dongbori 1 and Reno had greater GCA effects for late times. GCA effects were highly significant in $F_1$ and $F_2$ generations, showing high GCA/SCA ratios (7.02). The heading and maturing times in field were positively correlated with antifreeze proteins concentrations, accumulation, resistance to photoinhibition and winter survival, respectively) but the grain-filling period did negatively correlated with the trails.

A Study on the Optimum Design of Multiple Screw Type Dryer for Treatment of Sewage Sludge (하수슬러지 처리를 위한 다축 스크류 난류 접촉식 건조기의 최적 설계 연구)

  • Na, En-Soo;Shin, Sung-Soo;Shin, Mi-Soo;Jang, Dong-Soon
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.34 no.4
    • /
    • pp.223-231
    • /
    • 2012
  • The purpose of this study is to investigate basically the mechanism of heat transfer by the resolution of complex fluid flow inside a sophisticated designed screw dryer for the treatment of sewage sludge by using numerical analysis and experimental study. By doing this, the result was quite helpful to obtain the design criteria for enhancing drying efficiency, thereby achieving the optimal design of a multiple screw type dryer for treating inorganic and organic sludge wastes. One notable design feature of the dryer was to bypass a certain of fraction of the hot combustion gases into the bottom of the screw cylinder, by the fluid flow induction, across the delicately designed holes on the screw surface to agitate internally the sticky sludges. This offers many benefits not only in the enhancement of thermal efficiency even for the high viscosity material but also greater flexibility in the application of system design and operation. However, one careful precaution was made in operation in that when distributing the hot flue gas over the lump of sludge for internal agitation not to make any pore blocking and to avoid too much pressure drop caused by inertial resistance across the lump of sludge. The optimal retention time for rotating the screw at 1 rpm in order to treat 200 kg/hr of sewage sludge was determined empirically about 100 minutes. The corresponding optimal heat source was found to be 150,000 kcal/hr. A series of numerical calculation is performed to resolve flow characteristics in order to assist in the system design as function of important system and operational variables. The numerical calculation is successfully evaluated against experimental temperature profile and flow field characteristics. In general, the calculation results are physically reasonable and consistent in parametric study. In further studies, more quantitative data analyses such as pressure drop across the type and loading of drying sludge will be made for the system evaluation in experiment and calculation.

Barrier Techniques for Spinal Cord Protection from Thermal Injury in Polymethylmethacrylate Reconstruction of Vertebral Body : Experimental and Theoretical Analyses (Polymethylmethacrylate를 이용한 척추체 재건술에서 척수의 열 손상을 방지하기 위한 방어벽 기법 : 실험적 및 이론적 분석)

  • Park, Choon Keun;Ji, Chul;Hwang, Jang Hoe;Kwun, Sung Oh;Sung, Jae Hoon;Choi, Seung Jin;Lee, Sang Won;Park, Sung Chan;Cho, Kyeung Suok;Park, Chun Kun;Yuan, Hansen;Kang, Joon Ki
    • Journal of Korean Neurosurgical Society
    • /
    • v.30 no.3
    • /
    • pp.272-277
    • /
    • 2001
  • Objective : Polymethylmethacrylate(PMMA) is often used to reconstruct the spine after total corpectomy, but the exothermic curing of liquid PMMA poses a risk of thermal injury to the spinal cord. The purposes of this study are to analyze the heat blocking effect of pre-polymerized PMMA sheet in the corpectomy model and to establish the minimal thickness of PMMA sheet to protect the spinal cord from the thermal injury during PMMA cementation of vertebral body. Materials & Methods : An experimental fixture was fabricated with dimensions similar to those of a T12 corpectomy defect. Sixty milliliters of liquid PMMA were poured into the fixture, and temperature recordings were obtained at the center of the curing PMMA mass and on the undersurface(representing the spinal cord surface) of a prepolymerized PMMA sheet of variable thickness(group 1 : 0mm, group 2 : 5mm, or group 3 : 8mm). Six replicates were tested for each barrier thickness group. Results : Consistent temperatures($106.8{\pm}3.9^{\circ}C$) at center of the curing PMMA mass in eighteen experiments confirmed the reproducibility of the experimental fixture. Peak temperatures on the spinal cord surface were $47.3^{\circ}C$ in group 2, and $43.3^{\circ}C$ in group 3, compared with $60.0^{\circ}C$ in group 1(p<0.00005). So pre-polymerized PMMA provided statistically significant protection from heat transfer. The difference of peak temperature between theoretical and experimental value was less than 1%, while the predicted time was within 35% of experimental values. The data from the theoretical model indicate that a 10mm barrier of PMMA should protect the spinal cord from temperatures greater than $39^{\circ}C$(the threshold for thermal injury in the spinal cord). Conclusion : These results suggest that pre-polymerized PMMA sheet of 10mm thickness may protect the spinal cord from the thermal injury during PMMA reconstruction of vertebral body.

  • PDF

Growth characteristics of pathogens isolated from surface of carcass (도체표면에서 분리한 병원성 미생물의 성장특성)

  • 정영숙;박나영;이신호
    • Food Science and Preservation
    • /
    • v.9 no.4
    • /
    • pp.434-440
    • /
    • 2002
  • The growth characteristics of 5. coli O157:H7 CDFI, A. sobria CDF3 and S. aureus CDF2 isolated from surface of carcass were investigated to improve hygienic quality of beef. The total count of carcass surface before washing was higher than that of after washing. Total count of after cooling decreased about 10$^1$∼ 10$^2$/㎠ compare with before cooling. Total count of carcass surface after transfer increased regardless seasons. The growth E. coli O157:H7 CDF1 occurred at pH 4 and 6% NaCl but A. sobria CDF3 and S. aureus CDF2 did not grow at the same conditions. Although the growth of E. coli O157:H7 CDF1 and S. aureus CDF2 was inhibited by 0.3% lactic acid, but A sobria CDF3 did not grow in TSB containing 0.3% lactic acid. E. coli O157:H7 CDF1 grew rapidly after 3 days incubation at 10$\^{C}$ but did not grow at 4$\^{C}$. But A. sobria CDF3 grew rapidly after 3 days incubation at 4$\^{C}$. E. coli O157:H7 CDF1 and A. sobria CDF3 were destroyed by heat treatment for 3 min at 60$\^{C}$. S. aureus CDF2 did not detect after heat treatment for 2 min at 70$\^{C}$.

Frozen Food Thawing and Heat Exchanging Performance Analysis of Radio Frequency Thawing Machine (라디오파 해동기의 해동 및 가열성능 분석)

  • Kim, Jinse;Park, Seok Ho;Choi, Dong Soo;Choi, Seung Ryul;Kim, Yong Hoon;Lee, Soo Jang;Park, Chun Wan;Han, Gui Jeung;Cho, Byoung-Kwan;Park, Jong Woo
    • Food Engineering Progress
    • /
    • v.21 no.1
    • /
    • pp.57-63
    • /
    • 2017
  • This study investigated the effects of 27.12 MHz radio frequency (RF) heating on heat transfer phenomena during the thawing process of frozen food. To determine the velocity of the RF thawing machine, samples were frozen at $-80^{\circ}C$ and subjected to different power treatments. The phase change times (-5 to $0^{\circ}C$) of frozen radish were 30, 26, 13, and 8 min; those of pork sirloin were 38, 25, 11, and 5 min; those of rump were 23, 17, 11, and 6 min; those of chicken breast were 42, 29, 13, and 9 min; and those of tuna were 25, 23, 10, and 5 min at 50, 100, 200, and 400 W, respectively. The heating limit temperatures of the radish, pork sirloin, rump, chicken breast, and tuna samples were 19.5, 9.2, 21.8, 8.8, and $16.8^{\circ}C$ at 50 W; 23.5, 15.5, 27.3, 12.3, and $19^{\circ}C$ at 100 W; 42, 26.9, 45.7, 22.1, and $39.4^{\circ}C$ at 200 W; and 48.5, 54.7, 63.6, 57.3, and $44.9^{\circ}C$ at 400 W. These results suggest that high-power RF improves thawing velocity and heating limit temperatures, and that an improvement on the operation of the RF thawing machine, according to food temperatures, is needed.

Analysis of Hydrodynamics in a Directly-Irradiated Fluidized Bed Solar Receiver Using CPFD Simulation (CPFD를 이용한 태양열 유동층 흡열기의 수력학적 특성 해석)

  • Kim, Suyoung;Won, Geunhye;Lee, Min Ji;Kim, Sung Won
    • Korean Chemical Engineering Research
    • /
    • v.60 no.4
    • /
    • pp.535-543
    • /
    • 2022
  • A CPFD (Computational particle fluid dynamics) model of solar fluidized bed receiver of silicon carbide (SiC: average dp=123 ㎛) particles was established, and the model was verified by comparing the simulation and experimental results to analyze the effect of particle behavior on the performance of the receiver. The relationship between the heat-absorbing performance and the particles behavior in the receiver was analyzed by simulating their behavior near bed surface, which is difficult to access experimentally. The CPFD simulation results showed good agreement with the experimental values on the solids holdup and its standard deviation under experimental condition in bed and freeboard regions. The local solid holdups near the bed surface, where particles primarily absorb solar heat energy and transfer it to the inside of the bed, showed a non-uniform distribution with a relatively low value at the center related with the bubble behavior in the bed. The local solid holdup increased the axial and radial non-uniformity in the freeboard region with the gas velocity, which explains well that the increase in the RSD (Relative standard deviation) of pressure drop across the freeboard region is responsible for the loss of solar energy reflected by the entrained particles in the particle receiver. The simulation results of local gas and particle velocities with gas velocity confirmed that the local particle behavior in the fluidized bed are closely related to the bubble behavior characterized by the properties of the Geldart B particles. The temperature difference of the fluidizing gas passing through the receiver per irradiance (∆T/IDNI) was highly correlated with the RSD of the pressure drop across the bed surface and the freeboard regions. The CPFD simulation results can be used to improve the performance of the particle receiver through local particle behavior analysis.

Studies on the Rice Yield Decreased by Ground Water Irrigation and Its Preventive Methods (지하수 관개에 의한 수도의 멸준양상과 그 방지책에 관한 연구)

  • 한욱동
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.16 no.1
    • /
    • pp.3225-3262
    • /
    • 1974
  • The purposes of this thesis are to clarify experimentally the variation of ground water temperature in tube wells during the irrigation period of paddy rice, and the effect of ground water irrigation on the growth, grain yield and yield components of the rice plant, and, furthermore, when and why the plant is most liable to be damaged by ground water, and also to find out the effective ground water irrigation methods. The results obtained in this experiment are as follows; 1. The temperature of ground water in tube wells varies according to the location, year, and the depth of the well. The average temperatures of ground water in a tubewells, 6.3m, 8.0m deep are $14.5^{\circ}C$ and $13.1^{\circ}C$, respercively, during the irrigation period of paddy rice (From the middle of June to the end of September). In the former the temperature rises continuously from $12.3^{\circ}C$ to 16.4$^{\circ}C$ and in the latter from $12.4^{\circ}C$ to $13.8^{\circ}C$ during the same period. These temperatures are approximately the same value as the estimated temperatures. The temperature difference between the ground water and the surface water is approximately $11^{\circ}C$. 2. The results obtained from the analysis of the water quality of the "Seoho" reservoir and that of water from the tube well show that the pH values of the ground water and the surface water are 6.35 and 6.00, respectively, and inorganic components such as N, PO4, Na, Cl, SiO2 and Ca are contained more in the ground water than in the surface water while K, SO4, Fe and Mg are contained less in the ground water. 3. The response of growth, yield and yield components of paddy rice to ground water irrigation are as follows; (l) Using ground water irrigation during the watered rice nursery period(seeding date: 30 April, 1970), the chracteristics of a young rice plant, such as plant height, number of leaves, and number of tillers are inferior to those of young rice plants irrigated with surface water during the same period. (2) In cases where ground water and surface water are supplied separately by the gravity flow method, it is found that ground water irrigation to the rice plant delays the stage at which there is a maximum increase in the number of tillers by 6 days. (3) At the tillering stage of rice plant just after transplanting, the effect of ground water irrigation on the increase in the number of tillers is better, compared with the method of supplying surface water throughout the whole irrigation period. Conversely, the number of tillers is decreased by ground water irrigation at the reproductive stage. Plant height is extremely restrained by ground water irrigation. (4) Heading date is clearly delayed by the ground water irrigation when it is practised during the growth stages or at the reproductive stage only. (5) The heading date of rice plants is slightly delayed by irrigation with the gravity flow method as compared with the standing water method. (6) The response of yield and of yield components of rice to ground water irrigation are as follows: \circled1 When ground water irrigation is practised during the growth stages and the reproductive stage, the culm length of the rice plant is reduced by 11 percent and 8 percent, respectively, when compared with the surface water irrigation used throughout all the growth stages. \circled2 Panicle length is found to be the longest on the test plot in which ground water irrigation is practised at the tillering stage. A similar tendency as that seen in the culm length is observed on other test plots. \circled3 The number of panicles is found to be the least on the plot in which ground water irrigation is practised by the gravity flow method throughout all the growth stages of the rice plant. No significant difference is found between the other plots. \circled4 The number of spikelets per panicle at the various stages of rice growth at which_ surface or ground water is supplied by gravity flow method are as follows; surface water at all growth stages‥‥‥‥‥ 98.5. Ground water at all growth stages‥‥‥‥‥‥62.2 Ground water at the tillering stage‥‥‥‥‥ 82.6. Ground water at the reproductive stage ‥‥‥‥‥ 74.1. \circled5 Ripening percentage is about 70 percent on the test plot in which ground water irrigation is practised during all the growth stages and at the tillering stage only. However, when ground water irrigation is practised, at the reproductive stage, the ripening percentage is reduced to 50 percent. This means that 20 percent reduction in the ripening percentage by using ground water irrigation at the reproductive stage. \circled6 The weight of 1,000 kernels is found to show a similar tendency as in the case of ripening percentage i. e. the ground water irrigation during all the growth stages and at the reproductive stage results in a decreased weight of the 1,000 kernels. \circled7 The yield of brown rice from the various treatments are as follows; Gravity flow; Surface water at all growth stages‥‥‥‥‥‥514kg/10a. Ground water at all growth stages‥‥‥‥‥‥428kg/10a. Ground water at the reproductive stage‥‥‥‥‥‥430kg/10a. Standing water; Surface water at all growh stages‥‥‥‥‥‥556kg/10a. Ground water at all growth stages‥‥‥‥‥‥441kg/10a. Ground water at the reproductive stage‥‥‥‥‥‥450kg/10a. The above figures show that ground water irrigation by the gravity flow and by the standing water method during all the growth stages resulted in an 18 percent and a 21 percent decrease in the yield of brown rice, respectively, when compared with surface water irrigation. Also ground water irrigation by gravity flow and by standing water resulted in respective decreases in yield of 16 percent and 19 percent, compared with the surface irrigation method. 4. Results obtained from the experiments on the improvement of ground water irrigation efficiency to paddy rice are as follows; (1) When the standing water irrigation with surface water is practised, the daily average water temperature in a paddy field is 25.2$^{\circ}C$, but, when the gravity flow method is practised with the same irrigation water, the daily average water temperature is 24.5$^{\circ}C$. This means that the former is 0.7$^{\circ}C$ higher than the latter. On the other hand, when ground water is used, the daily water temperatures in a paddy field are respectively 21.$0^{\circ}C$ and 19.3$^{\circ}C$ by practising standing water and the gravity flow method. It can be seen that the former is approximately 1.$0^{\circ}C$ higher than the latter. (2) When the non-water-logged cultivation is practised, the yield of brown rice is 516.3kg/10a, while the yield of brown rice from ground water irrigation plot throughout the whole irrigation period and surface water irrigation plot are 446.3kg/10a and 556.4kg/10a, respectivelely. This means that there is no significant difference in yields between surface water irrigation practice and non-water-logged cultivation, and also means that non-water-logged cultivation results in a 12.6 percent increase in yield compared with the yield from the ground water irrigation plot. (3) The black and white coloring on the inside surface of the water warming ponds has no substantial effect on the temperature of the water. The average daily water temperatures of the various water warming ponds, having different depths, are expressed as Y=aX+b, while the daily average water temperatures at various depths in a water warming pond are expressed as Y=a(b)x (where Y: the daily average water temperature, a,b: constants depending on the type of water warming pond, X; water depth). As the depth of water warning pond is increased, the diurnal difference of the highest and the lowest water temperature is decreased, and also, the time at which the highest water temperature occurs, is delayed. (4) The degree of warming by using a polyethylene tube, 100m in length and 10cm in diameter, is 4~9$^{\circ}C$. Heat exchange rate of a polyethylene tube is 1.5 times higher than that or a water warming channel. The following equation expresses the water warming mechanism of a polyethylene tube where distance from the tube inlet, time in day and several climatic factors are given: {{{{ theta omega (dwt)= { a}_{0 } (1-e- { x} over { PHI v })+ { 2} atop { SUM from { { n}=1} { { a}_{n } } over { SQRT { 1+ {( n omega PHI) }^{2 } } } } LEFT { sin(n omega t+ { b}_{n }+ { tan}^{-1 }n omega PHI )-e- { x} over { PHI v }sin(n omega LEFT ( t- { x} over {v } RIGHT ) + { b}_{n }+ { tan}^{-1 }n omega PHI ) RIGHT } +e- { x} over { PHI v } theta i}}}}{{{{ { theta }_{$\infty$ }(t)= { { alpha theta }_{a }+ { theta }_{ w'} +(S- { B}_{s } ) { U}_{w } } over { beta } , PHI = { { cpDU}_{ omega } } over {4 beta } }}}} where $\theta$$\omega$; discharged water temperature($^{\circ}C$) $\theta$a; air temperature ($^{\circ}C$) $\theta$$\omega$';ponded water temperature($^{\circ}C$) s ; net solar radiation(ly/min) t ; time(tadian) x; tube length(cm) D; diameter(cm) ao,an,bn;constants determined from $\theta$$\omega$(t) varitation. cp; heat capacity of water(cal/$^{\circ}C$ ㎥) U,Ua; overall heat transfer coefficient(cal/$^{\circ}C$ $\textrm{cm}^2$ min-1) $\omega$;1 velocity of water in a polyethylene tube(cm/min) Bs ; heat exchange rate between water and soil(ly/min)

  • PDF