• Title/Summary/Keyword: Heat Shock Protein 70-2

Search Result 159, Processing Time 0.028 seconds

Effect of Acute Heat Stress on Heat Shock Protein 70 and Its Corresponding mRNA Expression in the Heart, Liver, and Kidney of Broilers

  • Yu, Jimian;Bao, Endong
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.21 no.8
    • /
    • pp.1116-1126
    • /
    • 2008
  • The objective of this study was to investigate the expression and localization of heat shock protein 70 (Hsp70) and its mRNA in the heart, liver, and kidney of acutely heat-stressed broilers at various stressing times. Male AA broilers (n = 100) were randomly divided into 5 groups of 20 birds per group. After 30 d of adaptive feeding at ambient temperature, 80 experimental broilers were suddenly heat stressed by increasing the environmental temperature from $22{\pm}1^{\circ}C$ to $37{\pm}1^{\circ}C$. The 4 groups were heat stressed for 2, 3, 5, and 10 h, respectively. The localizations of Hsp70 protein and mRNA, determined by immunohistochemical staining and in situ hybridization, respectively, were demonstrated to be tissue dependent, implying that different tissues have differential sensibilities to heat stress. Intense Hsp70 staining was identified in the vascular endothelial cell of heart, liver and kidney, suggesting an association between expression of Hsp70 in vascular endothelial cell and functional recovery of blood vessels after heat shock treatment. Ante-mortem heat stress had a significant effect on the expression of Hsp70 protein and mRNA. The quantitation of Hsp70 protein and mRNA were both time and tissue dependent. During the exposure to heat stress, the heart, liver and kidney of broiler chickens exhibited increased amounts of Hsp70 protein and mRNA. The expression of hsp70 mRNA in the heart, liver and kidney of heat-stressed broilers increased significantly and attained the highest level after a 2-h exposure to elevated temperatures. However, significant elevations in Hsp70 protein occurred after 2, 5, and 3 h of heat stressing, respectively, indicating that the stress-induced responses vary among different tissues.

Overexpressed Drosophila DNA Methyltransferase 2 Isoform C Interacts with Hsp70 in Vivo

  • Roder, Karim
    • BMB Reports
    • /
    • v.40 no.4
    • /
    • pp.554-561
    • /
    • 2007
  • Shen and colleagues (Lin et al., 2004) have recently shown that overexpression of the Drosophila DNA methyltransferase 2 isoform C, dDnmt2c, extended life span of fruit flies, probably due to increased expression of small heat shock proteins such as Hsp22 or Hsp26. Here, I demonstrate with immunoprecipitations that overexpressed dDnmt2c interacts with endogenous Hsp70 protein in vivo in S2 cells. However, its C-terminal half, dDnmt2c(178-345) forms approximately 10-fold more Hsp70-containing protein complexe than wild-type dDnmt2c. Overexpressed dDnmt2c(178-345) but not the full length dDnmt2c is able to increase endogenous mRNA levels of the small heat shock proteins, Hsp26 and Hsp22. I provide evidence that dDnmt2c(178-345) increases Hsp26 promoter activity via two heat shock elements, HSE6 and HSE7. Simultaneously overexpressed Hsp40 or a dominant negative form of heat shock factor abrogates the dDnmt2c(178-345)-dependent increase in Hsp26 transcription. The data support a model in which the activation of heat shock factor normally found as an inactive monomer bound to chaperones is linked to the overexpressed C-terminus of dDnmt2c. Despite the differences observed in flies and S2 cells, these findings provide a possible explanation for the extended lifespan in dDnmt2c-overexpressing flies with increased levels of small heat shock proteins.

Isolation and Characterization of a CDNA Encoding a Protein Homologous to the Mouse 70 kDa Heat Shock Protein (생쥐 섬 유아세포에서 70 kDa 고온충격 단백질의 CDNA 클로닝과 염기서열 분석)

  • 김창환;정선미최준호
    • The Korean Journal of Zoology
    • /
    • v.35 no.2
    • /
    • pp.203-210
    • /
    • 1992
  • Hsp70, a 70 kDa protein, is the maior protein expressed when cells are heat-shocked. A cDNA library from mouse ID13 cells was screened with the human hsp70 gene as a probe, and a positive clone was obtained. The positive clone was subcloned into puc19 and the precise restriction was obtained. The CDNA was sequenced by the Sanger's dideoxv termination method. Single open reading frame that codes for a protein of 70 kDa was found. The DNA sequence of the cloned mouse DNA shows great homology (66-90%) with other mouse hsp70 genes and somewhat less homology (50",) with E. coli hsp70 gene (dnak). With the exception of one amino acid, the protein sequence deduced from the CDNA is identical to the mouse that shock cognate protein 70 (hsc70) that is constitutivelv expressed at normal temperature. The result suggests that the cloned CDNA encodes a hsc70 family rather than a heatinducible family.mily.

  • PDF

Expression Profile of Heat Shock Protein Gene Transcripts (HSP70 and HSP90) in the Nerve Ganglia of Pacific abalone, Haliotis discus hannai Exposed to Thermal Stress

  • Sukhan, Zahid Parvez;Kho, Kang Hee
    • Journal of Marine Life Science
    • /
    • v.5 no.2
    • /
    • pp.92-98
    • /
    • 2020
  • Heat shock proteins (HSPs) are highly conserved cellular proteins that contribute to adaptive responses of organisms to a variety of stressors. In response to stressors, cellular levels of HSPs are increased and play critical roles in protein stability, folding and molecular trafficking. The mRNA expression pattern of two well-known heat shock protein transcripts, HSP70 and HSP90 were studied in two tissues of nerve ganglia, cerebral ganglion and pleuropedal ganglion of Pacific abalone (Haliotis discus hannai). It was observed that both HSP70 and HSP90 transcripts were upregulated under heat stress in both ganglion tissues. Expression level of HSP70 was found higher than HSP90 in both ganglia whereas cerebral ganglion showed higher expression than pleuropedal ganglion. The HSP70 and HSP90 showed higher expression at Day-1 after exposed to heat stress, later decreased at Day-3 and Day-7 onwards. The present result suggested that HSP70 and HSP90 synthesize in nerve ganglion tissues and may provide efficient protection from stress.

Expression of Heat Shock Protein Protein 70 in Umbilical Vein Endothelial Cells Infected by Staphylococcus aureus

  • Chang, Hyun-Ah;Chang, Jun-Keun;Kim, Jong-Won;Kim, Mal-Nam
    • Journal of Microbiology and Biotechnology
    • /
    • v.10 no.2
    • /
    • pp.137-142
    • /
    • 2000
  • Environmental stres is known to induce heat shock proteins (HSPs) in eukaryotic cells. However, the induction of HSPs in host cells by microbial infection has not yet been well explained. Staphylococcus aureus (S. aureus) is one of the major pathogens in the pathogenesis of endovascular diseases such as infective endocarditis. In this study, the synthesis of stress-inducible 70 kDa HSP was investigated in the endothelial cells (ECs) after 3 h to 20 h of incubation with S. aureus. The dffect of S. aureus infection on the expression of HSP70 in cultured ECs was analyzed using laser scanning confocal microscopy (LSCM). The increase of HSP70 expression in ECs infected by S. aureus ($10^4{\;}cfu/ml$) for 20 h was 1.1-fold higher than that in heat shock treated ECs and 2.2-fold higher than that in untreated cells. Heat shock is known to induce intranucleus HSP70 expression in mammalian cells, whereas the S. aureus infection induced perinuclear expression in ECs as observed by LSCM. Consequently, the expression of HSP70 in ECs plays an important role in the pathogenesis of endovascular infection.

  • PDF

A role of carboxy-terminal region of Toxoplasma gondii-heat shock protein 70 in enhancement of T. gondii infection in mice

  • Mun, Hye-Seong;Norose, Kazumi;Aosai, Fumie;Chen, Mei;Yano, Akihiko
    • Parasites, Hosts and Diseases
    • /
    • v.38 no.2
    • /
    • pp.107-110
    • /
    • 2000
  • We investigated the role of recombinant Toxoplasma gondii heat shock protein (rT.g.HSP) 70-full length, rT.g. HSP70-NH2-terminal region, or rT.g. HSP70-carboxy-terminal region in prophylactic immunity in C57BL/6 mice perorally infected with Fukaya cysts of T. gondii. At 3, 4, 5, and 6 weeks after infection, the number of T gondii in the brain tissue of each mouse was measured by quantitative competitive-polymerase chain reaction (QC-PCR) targeting the surface antigen (SAG) 1 gene. Immunization with rT.g.HSP70-full length or rT.g.HSP70-carboxy-terminal region increased the number of T. gondii in the brain tissue after T. gondii infection, whereas immunization with rT.g.HSP70-NHa-terminal region did not. These results suggest that T.g. HSP70-carboxy-terminal region as well as T.g.HSP70-full length may induce deleterious effects on the protective immunity of mice infected with a cyst-forming T. gondii strain, Fukaya.

  • PDF

ATP-independent Thermoprotective Activity of Nicotiana tabacum Heat Shock Protein 70 in Escherichia coli

  • Cho, Eun-Kyung;Bae, Song-Ja
    • BMB Reports
    • /
    • v.40 no.1
    • /
    • pp.107-112
    • /
    • 2007
  • To study the functioning of HSP70 in Escherichia coli, we selected NtHSP70-2 (AY372070) from among three genomic clones isolated in Nicotiana tabacum. Recombinant NtHSP70-2, containing a hexahistidine tag at the amino-terminus, was constructed, expressed in E. coli, and purified by $Ni^{2+}$ affinity chromatography and Q Sepharose Fast Flow anion exchange chromatography. The expressed fusion protein, $H_6NtHSP70$-2 (hexahistidine-tagged Nicotiana tabacum heat shock protein 70-2), maintained the stability of E. coli proteins up to 90$^{\circ}C$. Measuring the light scattering of luciferase (luc) revealed that NtHSP70-2 prevents the aggregation of luc without ATP during high-temperature stress. In a functional bioassay (1 h at 50$^{\circ}C$) for recombinant $H_6NtHSP70$-2, E. coli cells overexpressing $H_6NtHSP70$-2 survived about seven times longer than those lacking $H_6NtHSP70$-2. After 2 h at 50$^{\circ}C$, only the E. coli overexpressing $H_6NtHSP70$-2 survived under such conditions. Our NtHSP70-2 bioassays, as well as in vitro studies, strongly suggest that HSP70 confers thermo-tolerance to E. coli.

Expression of the Heat Shock Proteins in HeLa and Fish CHSE-214 Cells Exposed to Heat Shock (어류 CHSE-214와 인간 HeLa 세포에서의 열충격에 의한 Heat Shock Protein의 발현)

  • 공회정;강호성김한도
    • The Korean Journal of Zoology
    • /
    • v.39 no.2
    • /
    • pp.123-131
    • /
    • 1996
  • In this study, we examined the expression of heat shock proteins (HSPs) in fish cell line CHSE-2lnl and human HeLa cells exposed to heat shock. In fish CHSE-214 cells HSP70 was the major polvpeptide induced by an elevated temperature or an amino acid analog, while in HeLa cells HSP90 as well as HSP70 were prominently enhanced in response to these stresses. Pretreatment of actinomvcin D prior to heat shock completely inhibited the induction of fish HSP70, indicating the transcriptional regulation of fish HSP70 gene expression. In HeLa and CHSE-214 cells either recovering from heat shock or experiencing prolonged heat shock, attenuation in the HSP90 a'nd HSP70 induction occurred but both induction and repression of HSP70 synthesis appear 19 precede those of HSP90. Moreover, attenuation did not occur in the syntheses of 40 kDa and 42 kOto proteins which were only induced in CHSE-214 cells. The enhanced syntheses of these he proteins continued as long as CHSE-214 cells were Siven heat shock. These results suggest that down-regulation of HSP syntheses during prolonged heat shock may be controlled by several different. as vet undefined, mechanisms.

  • PDF

Relation between Expression of Heat Shock Protein 70 and Vascular Contractility of Rat Aorta Treated with Arsenic (Arsenic처리에 따른 흰쥐 혈관의 수축과 heat shock protein 70과의 관계)

  • 권윤정;박태규;김중영
    • Korean Journal of Environmental Biology
    • /
    • v.21 no.3
    • /
    • pp.313-318
    • /
    • 2003
  • Environmental stresses, such as heat shock, alcohol and physiological salt have been shown to induce a group of protein called heat shock protein (HSPs) in various tissues. In this investigation, we studied that arsenic stress would alter contraction of isolated rat aorta and expression of heat shock protein 70 and investigated the relation between expression of HSP 70 and vascular contractility of isolated rat aorta. Rat aorta strips, mounted in organ baths were exposed to 0, 0.5, 1,2 and 4 mM arsonic for 60 min. and 1,3 and 8 hours later tested for contractile response and expression of heat shock protein 70. Contractility of rat aorta were determined by isometric transducer connected to computerized physiograph and expression of HSP 70 was characterized by western blotting, respectively. Potassium chloride (55 mM) significantly augmented vascular contractility of yat aorta by 39% compared with the control at 8 hours but not one or three hours after treatment of 4 mM arsenic. Arsonic stress (4 mM) also increased the expression of HSP 70 in rat aorta at 8 hours but one or three hours compared with the control and HSP expressed in vascular smooth muscle cells and some expressed in endothelium cells. These results suggest that arsenic stress not only did alter the magnitude of the contractile response to high potassium chloride but also increased the expression of HSP 70 in the rat aorta.

Effects of Taurine Supplementation on Heat Shock Protein 70 and In Vitro Protein Syntheses in Liver of Broiler Chicks under Chronic Heat Stress (고온 스트레스 하에 타우린 첨가가 육계 간의 Heat Shock Protein 70 및 In Vitro의 단백질 합성에 미치는 영향)

  • Cho, Eun So Ri;Park, Garng Hee;Shim, Kwan Seob
    • Korean Journal of Poultry Science
    • /
    • v.43 no.4
    • /
    • pp.213-218
    • /
    • 2016
  • This study was conducted to investigate the effect of taurine supplementation on heat shock protein 70 and in vitro protein turnover in broiler chicks under chronic heat stress. Chicks were allocated into 3 groups of 10 birds per group; the control group was maintained at a temperature of $24^{\circ}C$ without taurine (CO group), the heat-stressed group maintained at a temperature of $34^{\circ}C$ without taurine (HO group), and heat-stressed group maintained at a temperature of $34^{\circ}C$ with taurine (HT group). The final body and liver weights of broilers in the HO and HT groups were significantly lower than those of broilers in the CO group (P<0.05). However, these parameters of the broilers in the HT group were significantly higher than those of broilers in the HO group (P<0.05). The heat shock protein 70 (hsp70) concentration in the liver of broilers in the HO group was significantly higher than that of broilers in the CO and HT groups, but the hsp70 concentration in the liver of broilers in the HT group was not different from that of broilers in the CO group. Liver homogenates of 21 day-old broilers were incubated at temperatures of $37^{\circ}C$ and $45^{\circ}C$ to prove the effect of high temperature and taurine on total protein syntheses. Neither high temperature nor taurine supplementation affected protein syntheses in liver homogenates of the broilers. However, the more the temperature increased, the more the degradation rates of cytoplasmic protein in liver homogenates increased; however, taurine supplementation had no effects on the protein syntheses in the liver of the broiler. It is possible that taurine indirectly affected protein turnover via various physiological mechanisms.