• Title/Summary/Keyword: Heat Resistant Insulation

Search Result 26, Processing Time 0.028 seconds

Thermal Insulation and Flame Retardant Properties of Cement Based Super Light-weight Inorganic Thermal Insulation using 100㎛ Grade Glass Bubble (100㎛급 글라스 버블 혼입 시멘트계 초경량 무기 단열재의 단열 및 난연특성)

  • Son, Bae-Geun;Song, Hun
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.9 no.4
    • /
    • pp.642-649
    • /
    • 2021
  • Energy saving standard for buildings are strengthened, the application of exterior insulation finishing system and thickness of insulation materials are increasing. Most buildings with exterior insulation finishing system is applied organic insulating material. Organic insulating material have workability, economic feasibility, reduction in construction cost, and excellent thermal insulation performance. However, Organic insulating material is very vulnerable to heat, so when a fire occurs, rapid fire spread and toxic gas are generated, causing many casualties. Inorganic insulating material can be non-combustible performance, but it is heavy and has low thermal insulation performance. Mineral wool has higher thermal insulation performance than other types of inorganic insulating material, but mineral wool is disadvantageous to workability and vulnerable to moisture. Glass bubble are highly resistant to water and chemically stable substances. In addition, the density of the glass bubble is very low and the particles are spherical, fluidity is improved by the ball bearing effect. Glass bubbles can be used with cement-based ino rganic insulating material to impro ve the weight and thermal insulatio n perfo rmance o f cement-based inorganic insulation. This study produced a inorganic insulating materials were manufactured using cement-based materials and glass bubble. In order to evaluate the insulation performance and flame retardant performance of cement-based super light-weight inorganic insulating materials using with glass bubble, insulation performance or flame retardant and non-combustible performance were evaluated after manufacturing insulating materials using micro cement and two types of glass bubbles. From the test result, Increasing the mixing ratio of glass bubbles improved the insulation performance of cement-based super light-weight inorganic insulating materials, and when the mixing ratio of glass bubbles was 10%, it sho wed sufficient flame retardant and no n-co mbustible perfo rmance.

Thermal Property of Geopolymer Ceramics Based on Fly Ash-Blast Furnace Slag (플라이애시-고로슬래그 기반 지오폴리머 세라믹스의 열적특성)

  • Kim, Jin-Ho;Nam, In-Tak;Park, Hyun;Kim, Kyung-Nam
    • Korean Journal of Materials Research
    • /
    • v.26 no.10
    • /
    • pp.521-527
    • /
    • 2016
  • Geopolymers have many advantages over Portland cement, including energy efficiency, reduced greenhouse gas emissions, high strength at early age and improved thermal resistance. Alkali activated geopolymers made from waste materials such as fly ash or blast furnace slag are particularly advantageous because of their environmental sustainability and low cost. However, their durability and functionality remain subjects for further study. Geopolymer materials can be used in various applications such as fire and heat resistant fiber composites, sealants, concretes, ceramics, etc., depending on the chemical composition of the source materials and the activators. In this study, we investigated the thermal properties and microstructure of fly ash and blast furnace slag based geopolymers in order to develop eco-friendly construction materials with excellent energy efficiency, sound insulation properties and good heat resistance. With different curing times, specimens of various compositions were investigated in terms of compressive strength, X-ray diffraction, thermal property and microstructure. In addition, we investigated changes in X-ray diffraction and microstructure for geopolymers exposed to $1,000^{\circ}C$ heat.

A Study on the Development of a Dry PFB Method with High Fire Resistance (고강도콘크리트 내화성능을 확보한 건식화 PFB 공법 개발에 관한 연구)

  • Kim, Woo-Jae;Jung, Sang-Jin
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2008.11a
    • /
    • pp.49-52
    • /
    • 2008
  • The present study was to develop a dry PFB method similar to the existing gypsum board construction method in order to apply the existing wet PFB method that uses fire-resistant adhesive. It was found that the existing wet method can produce concrete compressive strength of 80MPa and fire resistance of 3 hours with 30mm PF boards. The goal of development in this study was fire resistance of 3 hours through dry construction of 15mm fire-resistant boards. 1. Improved PF board was prepared by adding inorganic fiber to existing board and using aggregate with grain size of 3mm or less. Molding was done at temperature higher than that for existing PF board molding. While wet curing is used for existing PF boards, this study used dry curing in order to enhance heat insulation performance. 2. According to the results of fire resistance test, when the dry PF method was applied, the temperature of the main reinforcing bar was 116℃ in 15mm, 103.8℃ in 20mm, and 94℃ in 25mm, and these results satisfied the current standards for fire resistance control presented by the Ministry of Land, Transport and Maritime Affairs. When a 3-hour fire resistance test was performed and the external properties of the specimen were examined, the outermost gypsum board hardly remained and internal PF board maintained its form without thermal strain.

  • PDF

Comparison of Standards for a 1ϕ 2 W MCCB and Study on the Evaluation of Heat Resistance Characteristics (1ϕ 2 W MCCB의 기준 비교 및 내열 특성 평가에 관한 연구)

  • Choi, Chung-Seog;Lee, Jae-Hyuk
    • Fire Science and Engineering
    • /
    • v.28 no.4
    • /
    • pp.21-28
    • /
    • 2014
  • This study obtained the following results by analyzing the standards related to a $1{\phi}$ 2W MCCB and evaluating its heat resistance characteristics. Since KS C 8321 corresponds to IEC 60947-2 standards, most of the related regulations are similar. The NFPA, which presents the user oriented safety regulations, contains no details about tests or inspections, etc., but it does specify in detail the regulations directly related to safety. It can be seen that KS C 8321 classifies in detail the items about tests and inspections. However, IEC 60947-2 and IEEE C37.51 simplified the test and inspection items or omitted some of them. When applying thermal stress to an MCCB for 6 hours at $180^{\circ}C$ using a heat resistant experimental device, it was found that the actuator lever was transformed and moved in the tripped state. In addition, most of the fixing hanger was melted down, losing their function. When applying thermal stress to the MCCB at $90^{\circ}C$, it showed nothing peculiar, but the fixing hanger was partly deformed at $105^{\circ}C$ and $120^{\circ}C$. It was found that the fixing hanger was deformed and the name plate was discolored at $150^{\circ}C$. It can be seen from the analysis of the internals of the MCCB that the trip bar has been melted away and that the up and down operator has moved up. The experiment performed by applying a withstanding voltage of 6 kV for 60 s showed that all items remained intact. In addition, the evaluation of the insulation performance performed by applying DC 500 V using an insulation-resistance tester showed good insulation performance.

A Study on the Heat Resistance of Light-Weight Polymer Concrete Composites (경량 폴리머 콘크리트 복합체의 내열성능에 관한 연구)

  • Jo, Young-Kug
    • Journal of the Korea Institute of Building Construction
    • /
    • v.8 no.6
    • /
    • pp.131-137
    • /
    • 2008
  • In recent years, the light-weight aggregate has widely been used to reduce the weight of construction structures, and to achieve the thermal insulation of building structures. The purpose of this study is to evaluate the heat resistance of polymer concrete composites with light-weight aggregate made by binders as resin and cement with polymer dispersion. The light-weight polymer concrete composites are prepared with various conditions such as binder content, filler content, void-filling ratio, light-weight aggregate content and polymer-cement ratio, and tested for heat resistant test, and measured the weight reducing ratio, strengths and exhaustion content of gas such as CO, NO and $SO_2$. From the test results, the weight reducing ratio of light weight polymer concrete using UP binder after heat resistance test increase with an increase in the UP content irrespective of the filler content. The weight reducing ratio of polymer cement concrete is considerably smaller than that of UP concrete. In general, the strengths after heat resistance of polymer concrete composites are reduced about 40 to 65% compared with those before test. The exhausted quantity of CO, NO and $SO_2$ gases in polymer concrete composites is less than EPS(Expanded poly styrene). From the this study, it is confirmed that the many types gases discharge according to binder type of polymer concrete composites, its amount is controlled by selection of the binder type and mix proportions.

A Study on the Development of a Dry P0SCO E&C Fire Board Method with High Fire Resistance (건식화 P0SCO E&C Fire Board 공법 개발에 관한 연구)

  • Kim, Woo-Jae
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.721-724
    • /
    • 2008
  • The present study was to develop a dry PFB method similar to the existing gypsum board construction method in order to apply the existing wet PFB method that uses fire.resistant adhesive. It was found that the existing wet method can produce concrete compressive strength of 80MPa and fire resistance of 3 hours with 30mm PF boards. The goal of development in this study was fire resistance of 3 hours through dry construction of 15mm fire resistant boards. The results of fire resistance test showed an increase in thermal durability and thermal strain. It is believed that inorganic fiber reduces thermal strain, and lowers heat insulation performance by 15% or less. This suggests that heat insulation performance was improved by the change in the inner composition of PF board resulting from the adjustment of Al:Si mol ratio, high temperature molding, and dry curing. According to the results of fire resistance test, when the dry PF method was applied, the temperature of the main reinforcing bar was 116$^\circ$C in 15mm, 103.8$^\circ$C in 20mm, and 94$^\circ$C in 25mm, and these results satisfied the current standards for fire resistance control presented by the Ministry of Land, Transport and Maritime Affairs. When a 3 hour fire resistance test was performed and the external properties of the specimen were examined, the outermost gypsum board hardly remained and internal PF board maintained its form without thermal strain.

  • PDF

Melting Characteristics of Asbestos Cement Slate on Basicity Control (염기도 조절에 의한 석면슬레이트 용융특성)

  • Yun, Jinhan;Keel, Sangin;Min, Taijin;Lee, Chungkyu;Jang, Duhun
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.11a
    • /
    • pp.159.2-159.2
    • /
    • 2010
  • Asbestos is the collective name for a group of naturally occurring minerals in their fibrous form and hydrous silicates of magnesium and a mineral fiber that has been used commonly in a variety of building construction materials for insulation and as a fire-retardant. Asbestos has been used for a wide range of manufactured goods, because of its fiber strength and heat resistant properties. Nevertheless harmful of asbestos is quite serious. Exposure to airborne friable asbestos may result in a potential health risk because persons breathing the air may breathe in asbestos fibers. Continued exposure can increase the amount of fibers that remain in the lung. Fibers embedded in lung tissue over time may cause serious lung diseases including asbestosis, lung cancer. In this paper, we carried out as fundamental study for dispose of asbestos cement slate safely and perfectly. Melting Temperature of asbestos need to more than $1,520^{\circ}C$ and specially asbestos cement slate need more energy than that of pure asbestos. We need to decrease melting temperature of asbestos cement slate for economical efficiency. To the purpose, glass and bottom ash were chosen as additives for basicity control. we analyzed about properties of asbestos cements slate, melting characteristics on the additives ratio and temperature. We confirmed about harmlessness of melting slag through analysis of scanning electron microscope(SEM) and x-ray diffractometer(XRD).

  • PDF

Improvement of Flame-Retardant Performance of Polyurethane Foam Coated with Water Glass (물유리코팅에 따른 폴리우레탄 폼의 난연성능 개선에 대한 연구)

  • Kim, Hyeong-Jun;Park, Jewon;Na, Hyein;Lim, Hyung Mi;Chang, Gabin
    • Fire Science and Engineering
    • /
    • v.34 no.2
    • /
    • pp.7-13
    • /
    • 2020
  • In this study, water glass was applied as a coating material to a rigid polyurethane foam to improve the flame-retardant properties of the foam. The heat release rate of the cone calorimeter of the urethane foam, in which the inorganic water-glass coating layer was applied, decreased rapidly. The water glass coated on the polyurethane surface formed a glassy foam by foaming with water, which did not escape during the vitrification reaction when the foam or glass was heated. The glassy foam formed on the polyurethane foam became a fire-resistant insulation layer that inhibited the combustion of the polyurethane foam for more than 10 min. Water glass was found to improve the flame-retardant properties of the rigid polyurethane foam.

A Study on the Characteristics Assessment and Fabrication of Distribution Board according to KEMC Standards (KEMC 규정에 의한 분전반의 제작 및 특성 평가에 관한 연구)

  • Lee, Byung-Seol;Choi, Chung-Seog
    • Fire Science and Engineering
    • /
    • v.31 no.3
    • /
    • pp.63-72
    • /
    • 2017
  • This study fabricated a low-voltage 10 circuit distribution board based on the KEMC (Korea Electrical Manufacturers Cooperative) 2102-610 standard and performed a characteristics assessment of the developed 10 circuit distribution board to secure product stability. The developed 10 circuit distribution board is designed to have the characteristics of insulation materials, as well as resistance to corrosion ultraviolet radiation and mechanical impact. The developed distribution board is fabricated to have an appropriate protection class of enclosure, electric shock prevention and protection circuits, switchgear and its components, internal electrical circuits and connectors, external conduct terminal, insulation characteristics, temperature rise test, heat resistance, etc. The developed 10 circuit distribution board consists of a single phase circuit and 3-phase circuits. It is possible to measure in real time the leakage current generated from the load distribution line by installing a sensor module at the load side of each of the branched switchgears. In addition, it is possible to increase a circuit according to the use and purpose of the load and to also manage and check the load in real time. Temperature rise tests were performed on the developed 10 circuit distribution board at 18 places including the inlet connection, main circuit and distribution circuit bus bars and bus bar supports, etc. The highest temperature of $65.3^{\circ}C$ was measured at the R-Phase of the connection of the MCCB power supply for the branch circuit bus bar and a temperature rise of $61.6^{\circ}C$ was measured at the T-Phase of the load side. When applying thermal stress to an MCCB for 6 hours at $180^{\circ}C$ using a heat resistant experimental device, it was found that the actuator lever was transformed and moved in the tripped state.

A Study for the Fire Analysis and Igniting Cause of Freezing Protection Heating Cables (동파방지열선 화재 흔적분석과 발화원인 연구)

  • Lee, Jung Il;Ha, Kag Cheon
    • Journal of the Korean Society of Safety
    • /
    • v.33 no.3
    • /
    • pp.15-20
    • /
    • 2018
  • There have been a number of major fatal fire accidents in Korea recently. The number of fires in 2017 were 44,178, which is not only increasing number of fires but also increasing in casualties. Particularly, the fire at Jecheon Sports Center, which suffered many casualties, is expected to have a huge impact. The cause of the fire has not been determined yet, but heat waves on the ceiling have also been pointed out. As such, the copper heating waves, which are used as a preventive measure against damage of pipes due to freezing of pipes, etc., always have a fire hazard. To determine the possibility of a flame-resistant heated fire, a positive electric cable product was used to artificially ignite and analyze the results. In case of a short circuit, the external covering of the positive electric cable is damaged, but not short circuit unless the heating material surrounding the wire is damaged. Due to the characteristics of heating cable for preventing copper waves, the chances of insulation becoming more severe due to moisture and temperature changes are higher than normal wires. If the internal heating system is carbonized by insulating deterioration without damage to the outer coating, it is likely to cause trekking, to form a winding loop in the heating materials, and to cause short circuit in the heated materials. For the positive temperature line, if the middle is shorted, the current continues to flow to the short circuit unless the breaker disconnects. Consequently, a heated fire that does not cut off the power immediately may leave multiple marks or cuts.