• 제목/요약/키워드: Heat Panel

검색결과 397건 처리시간 0.03초

태양광패널 온도제어를 위한 PCM시스템 최적화에 관한 실험적 연구 (Experimental study for optimizing the thermal regulating system with phase change material on the photovoltaic panel)

  • 이효진;전종한
    • 한국태양에너지학회:학술대회논문집
    • /
    • 한국태양에너지학회 2009년도 추계학술발표대회 논문집
    • /
    • pp.273-278
    • /
    • 2009
  • The experimental study is performed to investigate the optimum design of the system dissipating properly heat from the in-situ solar panel installed on site. For this purpose, six 12-Watts panels, which are set at the different conditions of the solar panels contained phase change material, changing the array of the aluminum fin and honeycomb at the back of the panel, are tested. PCM, which has $44^{\circ}C$ melting point, is chosen in this study. In order to enhance the thermal heat from the absorbed heat in PCM, finned aluminum plate is placed. Furthermore, Aluminum honeycomb is imbedded in the back container to find if it would improve the thermal conductivity of PCM. As a result, the solar panel, which is combined with honeycomb and outward fins with PCM instead of placing the fine inward, is showing the best performance in terms of controling panel temperature and efficiency.

  • PDF

A study on an efficient prediction of welding deformation for T-joint laser welding of sandwich panel Part II : Proposal of a method to use shell element model

  • Kim, Jae Woong;Jang, Beom Seon;Kang, Sung Wook
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제6권2호
    • /
    • pp.245-256
    • /
    • 2014
  • I-core sandwich panel that has been used more widely is assembled using high power $CO_2$ laser welding. Kim et al. (2013) proposed a circular cone type heat source model for the T-joint laser welding between face plate and core. It can cover the negative defocus which is commonly adopted in T-joint laser welding to provide deeper penetration. In part I, a volumetric heat source model is proposed and it is verified thorough a comparison of melting zone on the cross section with experiment results. The proposed model can be used for heat transfer analysis and thermal elasto-plastic analysis to predict welding deformation that occurs during laser welding. In terms of computational time, since the thermal elasto-plastic analysis using 3D solid elements is quite time consuming, shell element model with multi-layers have been employed instead. However, the conventional layered approach is not appropriate for the application of heat load at T-Joint. This paper, Part II, suggests a new method to arrange different number of layers for face plate and core in order to impose heat load only to the face plate.

Physicochemical Properties and Sensory Evaluation for the Heat Level (Hot Taste) of Korean Red Pepper Powder

  • Ku, Kyung-Hyung;Lee, Kyung-A;Park, Jae-Bok
    • Preventive Nutrition and Food Science
    • /
    • 제17권1호
    • /
    • pp.29-35
    • /
    • 2012
  • This study investigated the heat level rating of several varieties of Korean red peppers. The chemical constitution of Korean red pepper samples were as follows: 0.54~290.15 mg% capsaicinoids, 79.22~139.09 ASTA value, and 16.76~29.92% free sugar content. The heat level of the Korean red pepper samples was evaluated by trained panelists and the correlation coefficient and F value (0.001%) of the panelist’s results were determined to be significant. In the principle component analysis (PCA), PC1 (capsaicinoids) and PC2 (free sugar) were shown to represent 31.98% and 25.77% of the total variance, respectively. The results of panelists trained for red pepper heat rating were evaluated using analysis of variance and correlation analysis. The trained panelists showed a high F value (p=0.05) and high correlation coefficient. A high correlation efficient of 0.84~0.93 for the test samples with a 40 Scoville heat unit (32,000 SHU red pepper powder) was reported in the sensory evaluation of the Korean red pepper heat level by a trained panel. However, the panel showed a low correlation efficiency of 0.70 $R^2$ when the 60 SHU test samples were included in the analysis.

A study on an efficient prediction of welding deformation for T-joint laser welding of sandwich panel PART I : Proposal of a heat source model

  • Kim, Jae Woong;Jang, Beom Seon;Kim, Yong Tai;Chun, Kwang San
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제5권3호
    • /
    • pp.348-363
    • /
    • 2013
  • The use of I-Core sandwich panel has increased in cruise ship deck structure since it can provide similar bending strength with conventional stiffened plate while keeping lighter weight and lower web height. However, due to its thin plate thickness, i.e. about 4~6 mm at most, it is assembled by high power $CO_2$ laser welding to minimize the welding deformation. This research proposes a volumetric heat source model for T-joint of the I-Core sandwich panel and a method to use shell element model for a thermal elasto-plastic analysis to predict welding deformation. This paper, Part I, focuses on the heat source model. A circular cone type heat source model is newly suggested in heat transfer analysis to realize similar melting zone with that observed in experiment. An additional suggestion is made to consider negative defocus, which is commonly applied in T-joint laser welding since it can provide deeper penetration than zero defocus. The proposed heat source is also verified through 3D thermal elasto-plastic analysis to compare welding deformation with experimental results. A parametric study for different welding speeds, defocus values, and welding powers is performed to investigate the effect on the melting zone and welding deformation. In Part II, focuses on the proposed method to employ shell element model to predict welding deformation in thermal elasto-plastic analysis instead of solid element model.

Sensitivity analysis of input variables to establish fire damage thresholds for redundant electrical panels

  • Kim, Byeongjun;Lee, Jaiho;Shin, Weon Gyu
    • Nuclear Engineering and Technology
    • /
    • 제54권1호
    • /
    • pp.84-96
    • /
    • 2022
  • In the worst case, a temporary ignition source (also known as transient combustibles) between two electrical panels can damage both panels. Mitigation strategies for electrical panel fires were previously developed using fire modeling and risk analysis. However, since they do not comply with deterministic fire protection requirements, it is necessary to analyze the boundary values at which combustibles may damage targets depending on various factors. In the present study, a sensitivity analysis of input variables related to the damage threshold of two electrical panels was performed for dimensionless geometry using a Fire Dynamics Simulator (FDS). A new methodology using a damage evaluation map was developed to assess the damage of the electrical panel. The input variables were the distance between the electrical panels, the vertical height of the fuel, the size of the fire, the wind speed and the wind direction. The heat flux was determined to increase as the vertical distance between the fuel and the panel decreased, and the largest heat flux was predicted when the vertical separation distance divided by one half flame length was 0.3-0.5. As the distance between the panels increases, the heat flux decreases according to the power law, and damage can be avoided when the distance between the fuel and the panel is twice the length of the panel. When the wind direction is east and south, to avoid damage to the electrical panel the distance must be increased by 1.5 times compared to no wind. The present scale model can be applied to any configuration where combustibles are located between two electrical panels, and can provide useful guidance for the design of redundant electrical panels.

플라즈마 디스플레이의 소음 저감 연구 (Study on Noise Reduction of Plasma Display Panel)

  • 박대경;권해섭;장동섭
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2002년도 추계학술대회논문집
    • /
    • pp.693-698
    • /
    • 2002
  • For the evaluation of the plasma display panel (PDP)'s noise, vibration and sound characteristics of fanless PDP are measured and investigated. PDP is a type of two-electrode vacuum tube which operates on the same principle as a household fluorescent light. An inert gas such as argon or neon is injected between two glass plates on which transparent electrodes have been formed, and the glass is illuminated by generating discharge. For this discharge, both high voltage and currents are needed and cause an acoustic noise. We investigated the noise characteristics connected with both a electromagnetic elements from SMPS to panel through X, Y and logic board, and a mechanical elements form panel to case through transfer path which related with vibration and heat. To reduce the noise of PDP, a discharge pulse memory design related with both higher brightness and lower power consumption is important and mechanical characteristics connected with dissipation process of both heat and vibration generated by panel discharge must be investigated.

  • PDF

상변환물질을 활용한 태양광 패널 표면온도 제어효과 및 최적화 시스템 (Temperature Control for PV Panel Absorbing Heat by Phase Change Material and its Estimation)

  • 이효진;전종한
    • 한국태양에너지학회 논문집
    • /
    • 제30권2호
    • /
    • pp.10-15
    • /
    • 2010
  • The experimental study was conducted to optimize the system dissipating properly heat from the in-situ solar panel installed on the roof. For this purpose, six 12-Watt panels, which were consisted of the different design conditions such as containing phase change material(PCM), changing the array of the aluminum fin and honeycomb at the back of the panel, were tested. PCM, which had $44^{\circ}C$ melting point, was chosen in this study. In order to enhance absorbing and expelling heatin PCM, profiled aluminum fin was placed either inward oroutward from the panel. Furthermore, Aluminum honeycomb is imbedded in the back container to find if it would improve the thermal conductivity of PCM. During the experiment, there were ranged to $26^{\circ}C\sim32^{\circ}C$ for outdoor temperature and $700W/m^2\sim1000W/m^2$ for irradiance. As a result, the solar panel, combined with honeycomb and outward fins with PCM instead of placing the fins inward, is showing the best performance in terms of controling panel temperature and its efficiency.

자동차용 강판의 소둔방법에 따른 성형성의 변화에 관한 연구 (A Study on the Formability of Autonobile Panel on the Heat Treatment Method)

  • 김순경;이승수;전언찬
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1995년도 추계학술대회 논문집
    • /
    • pp.629-632
    • /
    • 1995
  • The formability of an automobile body panel is very important. So, we performed an annealing condition change for the development of annealing condition with temperature, atmospheric gas and the annealing cycle. Formability was changed under the influenced of the mechanical properties of steel sheet for the automobile body panel. Therefore, ot os important in the BAF(Batch annealing furnace) annealing process. Because mechanical properties were decided on the heat treatment method of the coil. So, we tested the development of mechanical properties according to the heat treatment method at the annealing furnace using the Ax atmospheric gas and the HNx atmospheric gas. As a result of several investigations, we confirmed the following characteristics ; mechanical properties change under the influence of the annealing cycle and atmospheric gas.

  • PDF

2차원(次元) 온돌 상난방(床煖房)시스템의 연도내 열유동(熱流動) 및 열전달(熱傳達) 수치해석(數値解析) (Numerical Analysis of Heat Flow and Heat Transfer in Flue Channel of Two-Dimensional Ondol Panel Heating System)

  • 김영득;민만기;이상혁;김원갑
    • 설비공학논문집
    • /
    • 제6권4호
    • /
    • pp.337-343
    • /
    • 1994
  • Numerical analysis was applied to a simplified two-dimensional Ondol heating model which consists of heating space on the top of it along with radiant and convective heating floor panel, flue channel in the midway and rectangular underground soil region at the bottom. These three components constitute a system thermally coupled at the top and bottom interfaces of the flue channel. Investigated in the present paper are effects with variations of the Reynolds numbers of 100, 200, and 300, Grashof numbers of $0.1{\times}10^6$ and $0.3{\times}10^6$ and aspect ratios of 15 and 20 on the heat transfer and fluid flow characteristics of two-dimensional Ondol heating model by computer simulation.

  • PDF

국부 경화 열처리된 차체 부품의 기계적 성질과 미세조직에 관한 연구 (A Study on Mechanical Properties and Microstructure of Local-Hardening Heat-Treated Automotive Panel)

  • 이재호;정우창
    • 열처리공학회지
    • /
    • 제23권6호
    • /
    • pp.301-308
    • /
    • 2010
  • A steel with chemical composition, 0.22% C, 0.25% Si, 1.26% Mn, 0.22% Cr, 0.04% Ti, 0.0042% B, and a microstructure of ferrite and spheroidized cementite has been press-formed to automotive center pillar followed by local-hardening heat-treatment. Hardness, tensile properties, fractography, microstructure and surface roughness of local-hardening heat-treated automotive center pillar have been examined. The directly heated and quenched area had fully martensitic structure with Vickers hardenss in the range of 500 to 510. The heat affected area close to the directly heated area showed dual-phase structure of ferrite and martensite. The width of the heat-treated and heat-affected areas after the local-hardening heat treatment was ranging from 32 mm to 50 mm. The surface of the local-hardening heat-treated center pillar revealed some temper color as a consequence of the oxidation during the heat treatment, but the surface roughness was not affected by the local-hardening heat treatment.