• 제목/요약/키워드: Heat Loss Effect

검색결과 519건 처리시간 0.021초

CH4/Air 예혼합화염의 하류영역에서 체류시간 및 열손실에 의한 NOx의 생성특성 (The Effect of Residence Time and Heat Loss on NOx Formation Characteristics in the Downstream Region of CH4/Air Premixed Flame)

  • 황철홍;현승호;탁영조;이창언
    • 대한기계학회논문집B
    • /
    • 제31권1호
    • /
    • pp.99-108
    • /
    • 2007
  • In this study, the NOx formation characteristics of one-dimensional $CH_4$/Air premixed flame using detailed-kinetic chemistry are examined numerically. The combustor length and the amount of heat loss are varied to investigate the effect of residence time and heat loss on the NOx formation in a post-flame region. In the flame region, NO is mainly produced by the Prompt NO mechanism including $N_2$O-intermediate NO mechanism over all equivalence ratios. However, thermal NO mechanism is more important than Prompt NO mechanism in the post-flame region. In the case of adiabatic condition, the increase of combustor length causes the remarkable increase of NO emission at the exit due to the increase of residence time. On the other hand, NO reaches the equilibrium state in the vicinity of flame region, considering radiation and conduction heat losses. Furthermore the NO, in the case of $\phi$=1.2, is gradually reduced in the downstream region as the heat loss is increased. From these results, it can be concluded that the controls of residence time and heat loss in a combustor should be recognized as an important NOx reduction technology.

냉장고 가스켓 형상 변화에 따른 냉장고 열손실 저감 효과 (The Effect of Gasket Shape on Heat Loss Reduction in a Refrigeration)

  • 하지수;정광수;김태권;김경호;김석로
    • 설비공학논문집
    • /
    • 제21권5호
    • /
    • pp.305-310
    • /
    • 2009
  • The amount of heat loss of a refrigerator through the gasket is nearly 30% of total refrigerator heat loss. In this paper, quantitative evaluation analysis of heat loss through gasket is established with numerical heat transfer analysis. Extending the gasket shape to protect the heat loss from the gasket, power consumption is measured by using real refrigerator in a temperature and humidity chamber and suggest the gasket shape to reduce the heat loss. From the present result of the numerical simulation of heat transfer and experiment with varying gasket shape, we are able to reduce the heat loss about 20-40% by using extended gasket and the power consumption can be reduced about 5%.

고압하에서 수소 확산화염의 소염에 미치는 복사 열손실 효과에 관한 수치적 연구 (A Numerical Study on Effect of Radiative Heat Loss on Extinction of Hydrogen Diffusion Flames at High Pressure)

  • 오태균;손채훈
    • 대한기계학회논문집B
    • /
    • 제32권5호
    • /
    • pp.351-358
    • /
    • 2008
  • Extinction characteristics of hydrogen-air diffusion flames at various pressures are investigated numerically by adopting counterflow flame configuration as a model flamelet. Especially, effect of radiative heat loss on flame extinction is emphasized. Only gas-phase radiation is considered here and it is assumed that $H_2O$ is the only radiating species. Radiation term depends on flame thickness, temperature, $H_2O$ concentration, and pressure. From the calculated flame structures at various pressures, flame thickness decreases with pressure, but its gradient decreases at high pressure. Flame temperature and mole fraction of $H_2O$ increase slightly with pressure. Accordingly, as pressure increases, radiative heat loss becomes dominant. When radiative heat loss is considered, radiation-induced extinction is observed at low strain rate in addition to transport-induced extinction. As pressure increases, flammable region, where flame is sustained, shifts to the high-temperature region and then, shrunk to the point on the coordinate plane of flame temperature and strain rate. The present numerical results show that radiative heat loss can reduce the operating range of a combustor significantly.

형상 축소된 연소기의 열손실 및 소염해석 모델 (Thermodynamic Modeling of Heat Loss and Quenching in a Down Scaled Combustor)

  • 이대훈;권세진
    • 대한기계학회논문집B
    • /
    • 제26권7호
    • /
    • pp.919-926
    • /
    • 2002
  • Down scaled combustor undergoes increased heat loss that results in incomplete combustion or quenching of the flame as a consequence. Therefore, effect of enhanced heat loss should be understood to design a MEMS scale combustion devices. Existing combustion models are inadequate for micro combustors because they were developed for analysis of regular scale combustor where heat loss can be ignored during the flame propagation. In this research a combustion model is proposed in order to estimate the heat loss and predict quenching limit of flame in a down scaled combustor. Heat loss in the burned region is expressed in a convective form as a product of wall surface area, heat transfer coefficient and temperature difference. Comparison to the measurements showed satisfactory agreement of the pressure and temperature drop. Quenching is accounted for by introducing a correlation of quenching parameter and heat loss. The present model predicted burnt fraction of gases with reasonable accuracy and proved to be applicable in thermal design of a micro combustor.

최대 열손실에 대한 열손실 비에 기준한 Pin 핀의 최적화 (Pin Fin Optimization Based on the Ratio of Heat Loss to the Maximum Heat Loss)

  • 강형석
    • 대한기계학회논문집B
    • /
    • 제32권11호
    • /
    • pp.817-823
    • /
    • 2008
  • A pin fin with variable fin base thickness is optimized based on the ratio of heat loss to the maximum heat loss using a two-dimensional analytic method. The temperature profile along the normalized radius position in the fin is presented. For fixed fin outer radius, the optimum heat loss, fin length and efficiency as a function of fin base thickness, outer radius, convection characteristic numbers ratio and ambient convection characteristic number are presented. One of the results shows that the effect of fin outer radius and ambient convection characteristic number on the optimum fin length is remarkable.

사다리꼴 fin: 사각 fin과의 열손실 비교와 열손실에 미치는 경사요소의 효과 (Trapezoidal Fin : Comparison of Heat Loss with Rectangular Fin and the Effect of Slope Factor on the Heat Loss)

  • 강형석;윤세창
    • 산업기술연구
    • /
    • 제21권A호
    • /
    • pp.33-40
    • /
    • 2001
  • Heat loss from the trapezoidal fins haying different upper side slope and that from a rectangular fin are investigated by the three dimensional analytic method. It is shown that the trapezoidal fins having different upper side slope become an approximate rectangular fin by inst adjusting the slope factor. The comparison of the heat loss between a rectangular fin and an approximate rectangular fin is represented as a function of the non-dimensional fin length, fin width and Biot number to make sure that the analysis on the trapezoidal fins having different upper side slope is countable. One of the results is that the relative value of heat loss between a rectangular fin and an approximate rectangular fin is less than 1.5% for given ranges of non-dimensional length and width in case of Bi = 0.1.

  • PDF

압력 변화 모사를 통한 초소형 연소기에서의 열손실 예측 모텔 개발 (Development of Model for Heat Loss from a Micro Combustor Using Pressure Simulation)

  • 최권형;권세진;이대훈
    • 대한기계학회논문집B
    • /
    • 제27권1호
    • /
    • pp.39-45
    • /
    • 2003
  • As the size of a combustor decreases to a MEMS scale, heat loss increases and becomes a dominant effect on the performance of the devices. Existing models, however, are not adequate to predict the heat transfer and combustion processes in such small scales. In the present study, a semi-empirical model to calculate heat loss from a micro combustor is described. The model derives heat transfer coefficients that best fits the heat loss characteristics of a micro combustor that is represented by transient pressure record after combustion is completed. From conservation of energy equation applied to the burned gas inside the combustor, a relationship between pressure and heat transfer is reduced. Two models for heat transfer coefficients were tested; a constant and first order polynomial of temperature with its coefficients determined from fitting with measurements. The model was tested on a problem of cooling process of burnt gas in a micro combustor and comparison with measurements showed good agreements. The heat transfer coefficients were used for combustion calculation in a micro vessel. The results showed the dependence of flame speed on the scale of the chamber through enhanced heat loss.

냉장고 가스켓 형상 변화에 따른 냉장고 열손실 저감 효과 (The Effect on Heat Loss Reduction in a refrigeration with the Variation of Gasket Shape)

  • 하지수;정광수;김태권;김경호;정관식;김석로
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2008년도 동계학술발표대회 논문집
    • /
    • pp.286-291
    • /
    • 2008
  • Insulation of refrigerator with gasket material near door becomes the technical point at the aspect of heat loss and energy efficiency. Heat loss of refrigerator through the gasket is nearly 30%. In this paper, quantitative evaluation method of heat loss through gasket in established suggest the method for the improvement of heat loss. To analyze the heat transfer, we have used the common software Fluent that is used to CFD. Because of using the convection coefficient of heat transfer, we have solved only the equation of energy for heat transfer. As a result, we have known that heat loss flows through the heat flux vector and that the heat gathered out of the outside iron plate is transferred inner part through the gasket and ABS, etc. Through the result of the numerical simulation that use sub-gasket, we have known that we are able to reduce the heat loss about $20{\sim}40%$. when we applied that sub-gasket on a real refrigerator, the power consumption had reduced about 4.76%. In addition, when we applied a more improved sub-gasket on a real refrigerator and measured the power of the refrigerator the power consumption does reduce about 3% and we will try to apply the improved sub-gasket on a new models of refrigerator.

  • PDF

구동 조건 변화에 따른 동기 전동기의 성능 손실 및 내부 열전달 특성 (Performance Loss & Heat Transfer Characteristics of Synchronous Motors under Various Driving Conditions)

  • 최문석;엄석기
    • 한국자동차공학회논문집
    • /
    • 제21권3호
    • /
    • pp.165-173
    • /
    • 2013
  • Core loss has a major effect on heat generation in synchronous motors with surface-mounted permanent magnets (SPMs). It is essential to perform heat transfer analysis considering core loss in SPM because core loss is seriously affected by torque and speed of motors. In the present study, mechanical loss, core loss and coil loss are evaluated by measuring input and output energies under various driving conditions. For a better understanding heat transfer paths in synchronous motors, we developed a lumped thermal system analysis model. Subsequently, heat transfer analysis has been performed based on acquired energy loss, temperature data and thermal resistance with three types of SPM. It is shown that the torque constants decrease by Max. 10% as speed increase. At the rated torque, the core loss is Max. 10.9 times greater than the coil loss and the hysteresis loss of magnets is dominant in total loss.

초소형 정적 연소실의 열손실 분석 (ANALYSIS OF HEAT LOSS IN A CONSTANT VOLUME MICRO COMBUSTOR)

  • 나한비;이대훈;권세진
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2002년도 제25회 KOSCI SYMPOSIUM 논문집
    • /
    • pp.231-235
    • /
    • 2002
  • A theoretical and experimental study on the combustion process in a constant volume micro combustor is described. Unlike in a macro scale constant volume combustor, the heat loss to the wall plays a major role in flame propagation in a micro micro combustor. In order to analyze the effect of heat loss on combustion phenomena, pressure transition from ignition was measured. A number of cylindrical micro combustors with different diameter and depth were used for experiment to study the effect of length scales and shape factor. The diameter of combustor ranged from 7.5mm to 22.5 mm and the height of cylinder was from 1mm to 4mm. Initial pressure was also varied for the experiment. The diagnostic methods were severely limited due to the size of the apparatus and uncertainties of certain quantities to be measured in a small-scale environment. An analytical method to derive physical quantities that are essential for performance prediction from the pressure measurements is described.

  • PDF