• 제목/요약/키워드: Heat Insulation

검색결과 882건 처리시간 0.027초

도로 포장 기술 개선에 따른 대기 경계층의 열 변화에 관한 연구 (A Study on the Impact of an Improved Road Pavement Technology on the Thermal Structure of Atmospheric Boundary Layer)

  • 이순환;김인수;김해동
    • 한국대기환경학회지
    • /
    • 제24권5호
    • /
    • pp.551-561
    • /
    • 2008
  • In order to clarify the impact of anti-heat insulation pavement on the thermal structure of atmospheric boundary layer, field experiments and numerical simulations were carried out. Field experiment with various pavements were also conducted for 24 hours from 09LST 19 June 2007. And numerical experiment mainly focused on the impact of albedo variation, which is strongly associated with thermal characteristics of insulated pavement materials, on the temporal variation of planterly boundary layer. Numerical model used in this study is one dimension model with Planterly Boundary Layer developed by Oregon State University (OSUPBL). Because anti-heat insulation pavement material shows higher albedo value, not only maximum surface temperature but also maximum surface air temperature on anti-heat insulation pavement is lower than that on asphalt. The maximum value of surface temperature only reach on $49.5^{\circ}C$. As results of numerical simulations, surface sensible heat flux and the height of mixing layer are also influenced by the values of albedo. Therefore the characteristics of urban surface material and its impact on atmosphere should be clarified before the urban planning including improvement of urban heat environment and air quality.

적층단열재의 열침입량 측정 (Measurement of Heat Leak through Multi-Layer Insulation)

  • 김동락;양형석;정원묵;이병섭;신필권;황시돌
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제7권3호
    • /
    • pp.39-42
    • /
    • 2005
  • In this paper, the thermal characteristics of multilayer insulation (MLI) were experimentally investigated by using boil-off calorimetry method for seeking optimum standards of thermal insulation conditions. It is necessary to design the thermal insulating efficiency for applying to cryogenic instruments such as HTS power cable system. It is well known that the thermal characteristics and heat transfer of MLI are greatly affected by various MLI structures such as the number of layers and layer density, etc. However, it is difficult to know the thermal characteristics of MLI correctly. The heat leak by MLI between room temperature and liquid nitrogen temperature was measured at various conditions using a cylindrical cryostat. The cryostat consists of two guard vessels located at both end sides and a test vessel between them. The guard vessels are also filled with liquid nitrogen to prevent radiation heat leak through the both end side of the cylindrical test vessel to measure the heat leak only through MLI.

축열조용 복합 다층 단열재의 단열 성능 연구 (A Study on the Insulation Performance of Composite Multilayer Insulation by Applciation of Heat Storage Tank)

  • 최규홍;황승식;신동훈;박우성;박대웅;손승길;정태용
    • 에너지공학
    • /
    • 제23권3호
    • /
    • pp.82-87
    • /
    • 2014
  • 적층 단열재(multi-layer insulation, MLI)는 초전도 마그넷과 초전도 전력 케이블과 같은 초전도 응용기기의 냉각에 사용되는 저온유지장치(cryostat)에 외부 열침입을 차단하여 단열성능을 향상시키기 위해 사용된다. 적층 단열재는 인공위성에 사용되는 단열재로 적층단열재를 구성하는 자재의 종류와 적층층수 등에 따라 단열 성능이 변화한다. 본 연구에서는 적층 단열재의 원리를 이용한 축열조용 복합 다층 단열재(composite multilayer insulation, CMI)의 구성 재질 종류를 변경하고 적층 방식을 바꿈으로서 단열 성능이 바뀌는 것을 확인하였다. 실험은 KS C 9805의 방법을 이용하였으며, 복합 다층 단열재의 단열 성능 확인을 위해 동일한 조건의 축열조에 스티로폼을 적용하여 비교하였다. 또한, 실험 결과를 분석하기 위한 방법으로 기존 단열재에 대한 등가 두께를 비교하고 type별 CMI의 열전도율을 구해 비교하였다. 그 결과 복합 다층 단열재의 등가 두께는 스티로폼 보다 작아 동일 두께인 경우 스티로폼 보다 단열성능이 더 우수함을 확인할 수 있었다. 또한, 복합 다층 단열재의 구성 소재 및 적층 방식에 따라 전도, 대류 및 복사와 관련된 값들의 변화가 총괄 열전달계수에 영향을 미치는 것을 확인할 수 있었다.

냉장고 진공단열재 성능진단을 위한 열유속계 위치에 관한 연구 (A Study on the Heat Flux Meter Location for the Performance Test of a Refrigerator Vacuum Insulation Panel)

  • 하지수
    • 설비공학논문집
    • /
    • 제25권8호
    • /
    • pp.471-476
    • /
    • 2013
  • The present study has been carried out to elucidate the optimal method for the performance test of a refrigerator vacuum insulation panel (VIP), by using numerical heat transfer analysis. Three locations of heat flux meter have been tested, for deriving the best test method to clarify the normal or the abnormal condition of the vacuum insulation panel in a refrigerator. The first location of the heat flux sensor is at the same place as the heater, the second one is at the nearby side location of the heater and the third one is at the opposite side location of heater in the refrigerator. The heat flux and $1/q^{{\prime}{\prime}^2}$ or $q^{{\prime}{\prime}^4}$ were calculated for the cases with the normal VIP, and with the abnormal VIP, and their differences analyzed. From the present study, the first and the second method had a mere difference characteristics of heat flux and $1/q^{{\prime}{\prime}^2}$ or $q^{{\prime}{\prime}^4}$, between the cases with the normal or the abnormal VIP. The magnitude of the heat flux after 300sec had a great difference between the cases with the normal or abnormal VIP for the third method, and it could be considered the most optimal method to test the performance of a refrigerator vacuum insulation panel.

가속내구성 조건에 따른 건축용 유기계 단열재의 단열성능 변화 (Changes in Insulation Performance of Organic Insulating Materials for Building Construction by Accelerated Durability Test Conditions)

  • 임순현;이건철
    • 한국건축시공학회지
    • /
    • 제16권6호
    • /
    • pp.595-601
    • /
    • 2016
  • 현재 건축구조물에 사용되는 단열재의 단열성능은 초기성능을 기준으로 설계 시에만 반영하고 있으며, 장기 내구성 저하에 따른 단열성능 감소는 반영되고 있지 않다. 본 연구에서는 가속내구성 시험을 통해 단열재의 내구성 저하에 따른 단열성능 저하를 검토하였다. 연구결과, 발포폴리스티렌 단열재 비드법의 경우 표준환경 조건 및 실험실 가속 시험 조건에서는 경시변화에 따른 성능저하가 나타나지 않았으나, 동결 융해 시험 조건에는 성능이 저하하는 것으로 나타났다. 반면, 압출법의 경우 동결 융해 시험 조건에서는 단열성능 저하가 작았지만, 경시변화 초기에 내부 가스의 방출로 급격한 성능저하를 나타내었다. 또한, 경질 폴리우레탄 폼 단열재의 경우 다른 단열재에 비해 초기 단열성능이 매우 뛰어났으나, 실험실 가속 시험조건 및 동결 융해 시험 조건에서는 성능이 다소 저하하는 것으로 나타났다.

CRITICAL HEAT FLUX FOR DOWNWARD-FACING BOILING ON A COATED HEMISPHERICAL VESSEL SURROUNDED BY AN INSULATION STRUCTURE

  • Yang, J.;Cheung, F.B.;Rempe, J.L.;Suh, K.Y.;Kim, S.B.
    • Nuclear Engineering and Technology
    • /
    • 제38권2호
    • /
    • pp.139-146
    • /
    • 2006
  • An experimental study was performed to evaluate the effects of surface coating and an enhanced insulation structure on the downward facing boiling process and the critical heat flux on the outer surface of a hemispherical vessel. Steady-state boiling tests were conducted in the Subscale Boundary Layer Boiling (SBLB) facility using an enhanced vessel/insulation design for the cases with and without vessel coatings. Based on the boiling data, CHF correlations were obtained for both plain and coated vessels. It was found that the nucleate boiling rates and the local CHF limits for the case with micro-porous layer coating were consistently higher than those values for a plain vessel at the same angular location. The enhancement in the local CHF limits and nucleate boiling rates was mainly due to the micro-porous layer coating that increased the local liquid supply rate toward the vaporization sites on the vessel surface. For the case with thermal insulation, the local CHF limit tended to increase from the bottom center at first, then decrease toward the minimum gap location, and finally increase toward the equator. This non-monotonic behavior, which differed significantly from the case without thermal insulation, was evidently due to the local variation of the two-phase motions in the annular channel between the test vessel and the insulation structure.

수치해석을 이용한 다겹보온자재의 내부공기층 함유에 따른 보온 특성 (Thermal Insulation Property due to Internal Air-layer Content of Warm Multi Layer Materials by using Numerical Analysis)

  • 정성원
    • 한국기계가공학회지
    • /
    • 제11권4호
    • /
    • pp.97-103
    • /
    • 2012
  • This study investigates thermal insulation properties of multi layer materials depending on thickness of air layers. Numerical analysis on the heat flow of different insulating materials was conducted to identify whether their temperature distributions demonstrate the reduced rate of heat transfer conclusively or not. Analytical model is divided into two categories. One is to distinguish temperature distribution of the air-layer materials from the non-air layer ones. The other is to compare the efficacy between eight-layered insulating materials with no air-layer contained and three-layered insulating materials which include an air-layer definitely. In the latter case, the identical thickness is assigned to each material. The effect of thermal insulation by including an air-layer is verified in the first analytical model. The result of the second model shows that the insulation of the eight-layered materials is coterminous at the three-layered ones with an air-layer and the thermal insulation of the two materials is imperceptible. The benefits of cost and energy saving are anticipated if air-layers are efficiently incorporated in multi layer insulating materials in a greenhouse.

가정용 냉장고의 단열 최적화 (Optimization of Heat Insulation System for a Household Refrigerator)

  • 박진구
    • 설비공학논문집
    • /
    • 제15권2호
    • /
    • pp.95-102
    • /
    • 2003
  • Optimization for the insulation thickness and external shape of a household refrigerator is peformed in order to minimize thermal load through the insulation wall. The one dimensional conduction heat transfer model is adopted to calculate thermal load. Calculus of variation is employed to optimize the thickness and shape of refrigerator or freezer. The uniform distribution of an insulation thickness and cubed external shape make thermal load minimize. Finally, by using both of the computational and experimental method, the thermal load is minimized for a refrigerator/freezer. It is shown that there exists optimal thickness of insulation walls and external shape for given the external cabinet dimensions and freezer and refrigerator internal volumes, Also, the analytical results are well agreed with the experimental results.

수화발열량차 및 단열양생 공법을 활용한 매스콘크리트의 현장적용 (Field Application of Mass Concrete Applying Hydration Heat Differential Method and Insulation Curing Method)

  • 한준희;임군수;신세준;전충근;김종;한민철
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2023년도 봄 학술논문 발표대회
    • /
    • pp.227-228
    • /
    • 2023
  • This study is tocompare and analyze the results of hydration heat analysis and on-field measurements using the method with hydration heat difference and insulation curing method for controlling hydration heat in mass concrete. As a result of the analysis, the temperature difference between the center and the surface was predicted very similarly, and the mass concrete surface was controlled to a safe level when evaluating with a temperature crack index, and after being finished, it was confirmed that there was no hydration crack.

  • PDF

Development of an Engineering Model of Hydrogen-Fueled Ultra-micro Combustor for UMGT

  • Shimotori, Shoko;Yuasa, Saburo;Sakurai, Takashi
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2008년 영문 학술대회
    • /
    • pp.828-836
    • /
    • 2008
  • To develop an engineering-model of hydrogen-fueled ultra-micro combustor for Ultra Micro Gas Turbine(UMGT), we reviewed and summarized the problems in downsizing combustors, and determined a suitable burning method. The key issue to actualize practical ultra-micro combustors is reducing heat loss from the combustor to compressor and turbine. The reduction of heat loss was discussed from 3 different viewpoints; heat-insulation material, high-space-heating-rate combustion, and combustor-insolated gas turbine structure. Use of heat-insulation material induced the heat loss reduction to the surroundings. The heat loss ratio decreased substantially in reverse proportion to space heating rate, leading the idea that it could be reduced by burning at a high space heating rate. By settling the combustor insolated from the compressor and turbine, the heat transfer from the combustor to the compressor and turbine becomes smaller. For a selection of the suitable burning method, comparison between 2 burning methods, flat-flame and swirling-flamer types, was conducted. Synthetically the flat-flame burning method was confirmed to be more suitable for ultra-micro combustors than latter one. Base on them, an engineering-model of hydrogen-fueled flat-flame ultra-micro combustor was developed. To obtain high overall heat-insulation, heat-resistant and strength, the engineering-model combustor had triple layer structure with an advanced ceramic, a heat insulation material and a stainless steel. To simplify heat transfer issue in the combustor, it was isolated from the other components. Furthermore it was designed by considering structure, size, material, velocity, pressure loss and prevention of flashback.

  • PDF