• 제목/요약/키워드: Heat Insulating Materials

검색결과 113건 처리시간 0.026초

옥상녹화에 따른 콘크리트 건축물의 열환경 개선효과 -일사차폐블록과 잔디를 대상으로- (Study on Improvement of Thermal Environment by Green Roof Systems on RC Building - utilization of solar insulating block and the grass -)

  • 박찬필;후루가와 노부히사
    • 한국환경복원기술학회지
    • /
    • 제7권1호
    • /
    • pp.1-9
    • /
    • 2004
  • Caused on the excessive heat accumulation of concrete material, the indoor thermal environment of reinforced concrete building is so bad in Okinawa. As the interruption of solar radiation could be one of the methods to improve it, the purpose of this study is to find out the effect of adopting solar radiation interrupting materials -Solar insulating block, Grass, and both of them- for the improvement of thermal environment. As the result, it was found that grass on the solar insulating block which has an air layer obviously improved the indoor thermal environment of RC building which was applied to. And it was found that the systems have an effectuality on heat island phenomenon simultaneously. It could be proposed as a good system which improve the indoor thermal environment of the existent houses.

가속내구성 조건에 따른 건축용 유기계 단열재의 단열성능 변화 (Changes in Insulation Performance of Organic Insulating Materials for Building Construction by Accelerated Durability Test Conditions)

  • 임순현;이건철
    • 한국건축시공학회지
    • /
    • 제16권6호
    • /
    • pp.595-601
    • /
    • 2016
  • 현재 건축구조물에 사용되는 단열재의 단열성능은 초기성능을 기준으로 설계 시에만 반영하고 있으며, 장기 내구성 저하에 따른 단열성능 감소는 반영되고 있지 않다. 본 연구에서는 가속내구성 시험을 통해 단열재의 내구성 저하에 따른 단열성능 저하를 검토하였다. 연구결과, 발포폴리스티렌 단열재 비드법의 경우 표준환경 조건 및 실험실 가속 시험 조건에서는 경시변화에 따른 성능저하가 나타나지 않았으나, 동결 융해 시험 조건에는 성능이 저하하는 것으로 나타났다. 반면, 압출법의 경우 동결 융해 시험 조건에서는 단열성능 저하가 작았지만, 경시변화 초기에 내부 가스의 방출로 급격한 성능저하를 나타내었다. 또한, 경질 폴리우레탄 폼 단열재의 경우 다른 단열재에 비해 초기 단열성능이 매우 뛰어났으나, 실험실 가속 시험조건 및 동결 융해 시험 조건에서는 성능이 다소 저하하는 것으로 나타났다.

열처리 조건에 따른 XLPE / EPDM 계면의 전기적 특성 (Electrical Characteristics of the Interfacial Layer between XLPE/EPDM Laminates on the Heat Treatment)

  • 최원창;이제정;김석기;조대식;한상옥;박강식
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 1997년도 추계학술대회 논문집
    • /
    • pp.225-228
    • /
    • 1997
  • The main fault in this interface is that power cable insulating materials are mainly composed of a double layered structure, XLPE/FPDM laminates in cable joint. In this parer, we instituted the interface of XLPE/EPDM laminates and then investigated the breakdown and conduction characteristics as a function of heat treatment time. The results showed that conduction current was influenced by volatile crosslinking by-products which remained inside the insulating material during the production of XLPE and EPDM, especially during heat treatment process. And conduction current of XLPE/Oil 12500cSt/EPDM was more stable than XLPE/Grease/EPDM from the long heat treatment time. AC breakdown strength of silicone oil itself from the heat treatment was changed during the 4∼12 hour heat treatment time.

  • PDF

Effect of ceramic powder addition on the insulating properties of polymer layer prepared by dip coating method

  • Kim, S.Y.;Lee, J.B.;Kwon, B.G.;Hong, G.W.
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제16권1호
    • /
    • pp.14-18
    • /
    • 2014
  • The mechanical, electrical and thermal characteristics of insulating materials may significantly affect the performance and reliability of electrical devices using superconductors. General method to provide insulating layer between coated conductors is wrapping coated conductor with Kapton tape. But uniform and compact wrapping without failure or delamination in whole coverage for long length conductor is not a simple task and need careful control. Coating of insulating layer directly on coated conductor is desirable for providing compact insulating layer rather than wrapping insulating layers around conductor. Ceramic added polymer has been widely used as an insulating material for electric machine because of its good electrical insulating properties as well as excellent heat resistance and fairy good mechanical properties. The insulating layer of coated conductor should have high breakdown voltage and possesses suitable mechanical strength and maintain adhesiveness at the cryogenic temperature where it is used and withstand stress from thermal cycling. The insulating and mechanical properties of polymer can be improved by adding functional filler. In this study, insulating layer has been made by adding ceramic particles such as $SiO_2$ to a polymer resin. The size, amount and morphology of added ceramic powder was controlled and their effect on dielectric property of the final composite was measured and discussed for optimum composite fabrication.

100㎛급 글라스 버블 혼입 시멘트계 초경량 무기 단열재의 단열 및 난연특성 (Thermal Insulation and Flame Retardant Properties of Cement Based Super Light-weight Inorganic Thermal Insulation using 100㎛ Grade Glass Bubble)

  • 손배근;송훈
    • 한국건설순환자원학회논문집
    • /
    • 제9권4호
    • /
    • pp.642-649
    • /
    • 2021
  • 건축물의 에너지 절약기준이 강화되면서 외단열 공법의 적용과 단열재 두께가 증가하고 있다. 유기계 단열재는 시공성, 경제성 등 시공비용 절감 효과와 뛰어난 단열성능을 가지고 있다. 하지만, 유기계 단열재 특성상 열에 매우 취약하므로 화재 발생 시 급격한 화재확산과 유독가스 발생으로 심각한 피해가 발생한다. 무기계 단열재는 기본적으로 불연성능을 가지나 무겁고 유기계 단열재에 비해 단열성능이 떨어진다. 글라스 버블은 소다 라임 보로실리케이트 유리로 밀도가 매우 낮고, 내부가 비어 있는 구형의 입자로 볼베어링 효과로 유동성이 개선된다. 또한, 무기계 단열재에 혼입하여 사용할 경우 밀도와 단열성능이 개선된다. 본 연구는 시멘트계 재료와 글라스 버블을 혼합하여 무기 단열재를 제조하였고 단열, 난연 및 불연성능을 평가하였다. 연구 결과, 글라스 버블의 혼입률이 증가할수록 열린 기공을 형성하고 있으나, 기공 및 셀 벽에 분포됨에 따라 충분한 단열성능을 보인다. 또한, 글라스 버블의 혼입률은 10% 이하로 사용하는 것이 바람직하다.

XLPE/EPDM 계면의 열처리 시간에 따른 전기적 특성 (Electrical characteristics on the interfacial heat treatment time between XLPE/EPDM laminates)

  • 최원창;이제정;김석기;조대식;박강식;김종석;한상옥
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1997년도 하계학술대회 논문집 C
    • /
    • pp.1503-1506
    • /
    • 1997
  • The main fault in this interface is that power cable insulating materials are mainly composed of a double layered structure, XLPE/EPDM laminates in cable joint. In this paper, we instituted the interface of normal and degassed XLPE/EPDM and then investigated the breakdown and conduction characteristics as a function of heat treatment time. The results showed that conduction and breakdown strength was influenced by volatile crosslinking by-products which remained inside the insulating material during the production of XLPE and EPDM, especially during heat treatment process. And micro voids and surface roughness also influenced the conduction current and breakdown strength.

  • PDF

하부전극 산소 열처리를 통한 강유전체 터널접합 구조 메모리 소자의 전기저항 변화 특성 분석 (Variations in Tunnel Electroresistance for Ferroelectric Tunnel Junctions Using Atomic Layer Deposited Al doped HfO2 Thin Films)

  • 배수현;윤소정;민대홍;윤성민
    • 한국전기전자재료학회논문지
    • /
    • 제33권6호
    • /
    • pp.433-438
    • /
    • 2020
  • To enhance the tunneling electroresistance (TER) ratio of a ferroelectric tunnel junction (FTJ) device using Al-doped HfO2 thin films, a thin insulating layer was prepared on a TiN bottom electrode, for which TiN was preliminarily treated at various temperatures in O2 ambient. The composition and thickness of the inserted insulating layer were optimized at 600℃ and 50 Torr, and the FTJ showed a high TER ratio of 430. During the heat treatments, a titanium oxide layer formed on the surface of TiN, that suppressed oxygen vacancy generation in the ferroelectric thin film. It was found that the fabricated FTJ device exhibits two distinct resistance states with higher tunneling currents by properly heat-treating the TiN bottom electrode of the HfO2-based FTJ devices in O2 ambient.

Comparison between Water and N-Tetradecane as Insulation Materials through Modeling and Simulation of Heat Transfer in Packaging Box for Vaccine Shipping

  • Dao, Van-Duong;Jin, Ik-Kyu;Hur, Ho;Choi, Ho-Suk
    • 청정기술
    • /
    • 제22권1호
    • /
    • pp.45-52
    • /
    • 2016
  • This study reports on the modeling and simulation of heat transfer in packaging boxes used for vaccine shipping. Both water and n-tetradecane are used as primary insulation materials inside a multi-slab system. The one-dimensional model, which is a spherical model using a radius equivalent to the rectangular geometry of container, is applied in this study. N-tetradecane with low thermal diffusivity and proper phase transition temperature exhibits higher heat transfer resistance during both heating and cooling processes compared to water. Thus, n-tetradecane is a better candidate as an insulating material for packaging containers for vaccine shipping. Furthermore, the developed method can also become a rapid and economic tool for screening appropriate phase change materials used as insulation materials with suitable properties in logistics applications.

PC 펠렛의 마이크로웨이브 건조를 위한 에너지 효율 분석 (Analysis of Energy Consumption for Microwave Drying in PC Pellet)

  • 이현민;김재경;전의식
    • 반도체디스플레이기술학회지
    • /
    • 제20권4호
    • /
    • pp.44-48
    • /
    • 2021
  • Semiconductor inspection equipment makes components using materials with insulating properties for functional inspection including current and voltage of semiconductor parts. A representative insulating material is plastic, and plastic is made of a component through an injection process using plastic pellet. When plastic pellets contain excessive moisture, problems such as performance degradation and product surface defects occur. To prevent this, pre-drying is essential, and the heat convective type is the most applied. However, the heat convective type has a problem of low consumption efficiency and a long drying time. Recently, many studies have been conducted on a drying method using microwaves due to high energy efficiency. In this paper, drying was performed using a microwave for drying PC pellets. Energy consumption and drying efficiency analyzed by set up an experimental apparatus of heat convective, microwave, and hybrid(heat convective + microwave) types. It was confirmed that energy consumption and drying efficiency were high when drying using microwaves, and it was confirmed that the hybrid method improved drying performance compared to the heat convective method. It is expected that the research results of this paper can be used as basic data for drying plastic pellets using microwave.

Enhancement of Dielectric Properties of Polyamide Enamel Insulation in High Voltage Apparatuses Used in Medical Electronics by Adding Nano Composites of SiO2 and Al2O3 Fillers

  • Biju, A.C.;Victoire, T. Aruldoss Albert;Selvaraj, D. Edison
    • Journal of Electrical Engineering and Technology
    • /
    • 제10권4호
    • /
    • pp.1712-1719
    • /
    • 2015
  • In recent days, there was a significant development on the electrical, thermal, mechanical, physical, chemical, magnetic and optical properties of the polyamide enamel, varnish and other insulating materials by the addition of nano fillers to it. Enamel was used in High Voltage Apparatuses used in Medical Electronics as insulation. Insulating materials determine the life time of the electrical apparatuses. The life time of the insulating materials was improved by the addition of nano fillers to it. Hence the life time of the electrical apparatuses was improved by the mixing of nano fillers to the enamel. In this research, the basic dielectric properties of the enamel and enamel mixed with nano composites of silica and alumina were analyzed and compared with each other. The addition of nano fillers has improved the quality factor and capacitance of the enamel. It was also observed that the addition of nano fillers has reduced the dissipation factor and dielectric losses of the enamel. Heat produced by the dielectric losses was also reduced by adding nano fillers to it.