• Title/Summary/Keyword: Heat Forming

Search Result 600, Processing Time 0.027 seconds

Design and Construction of the Burj Dubai Concrete Building Project (버즈 두바이 콘크리트 건물의 설계와 시공)

  • Abdelrazaq, Ahmad
    • Magazine of the Korea Concrete Institute
    • /
    • v.20 no.6
    • /
    • pp.28-35
    • /
    • 2008
  • The Burj Dubai Project will be the tallest structure ever built by man; when completed the tower will be more than 700 meter tall and more than 160 floors. While the early integration of aerodynamic shaping and wind engineering considerations played a major role in the architectural massing and design of this multi-use/residential tower, where mitigating and taming the dynamic wind effects was one of the most important design criteria, the material selection for the structural systems of the tower was also a major consideration and required detailed evaluation of the material technologies and skilled labor available in the market at the time Concrete was selected for its strength, stiffness, damping, redundancy, moldability, free fireproofing, speed of construction, and cost effectiveness. In addition, the design challenges of using concrete for the design of the structural system components will be addressed. The focus on this paper will also be on the early planning of the concrete works of the Burj Dubai Project.

Development of a PTC Heater for Supplementary Heating in a Diesel Vehicle (디젤 차량의 보조 난방을 위한 PTC 히터 개발)

  • Shin, Yoon Hyuk;Kim, Sung Chul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.2
    • /
    • pp.666-671
    • /
    • 2014
  • Using positive temperature coefficient (PTC) heater as supplementary heating for diesel engine vehicles with low heat source is a good method to enhance the heating performance during cold start. In this study, the PTC elements were made by using screen printing process for forming ohmic contact layer, and prototype of PTC heater was designed and made for a diesel engine vehicle. In process of designing the PTC heater, the thermal flow analysis of PTC element modules was conducted for verifying the effect of the shapes of contact surface between each of the components (cooling fin, insulator, ceramic element). We also investigated the performance characteristic (heating capacity, energy efficiency, pressure drop) of the PTC heater through the experiments. Therefore, the experimental results indicated that prototype of PTC heater had satisfactory performance. This study will be basis for improving the manufacturing process and increasing the performance of the PTC element and heater.

Heat treatment effect of high-k HfO2 for tunnel barrier memory application

  • Hwang, Yeong-Hyeon;Yu, Hui-Uk;Kim, Min-Su;Lee, Yeong-Hui;Jo, Won-Ju
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.218-218
    • /
    • 2010
  • 기존의 비휘발성 메모리 소자는 터널 절연막으로 $SiO_2$ 단일 절연막을 이용하였다. 그러나 소자의 축소화와 함께 비휘발성 메모리 소자의 동작 전압을 낮추기 위해서 $SiO_2$ 단일 절연막의 두께도 감소 시켜야만 하였다. 하지만 $SiO_2$ 단일 절연막의 두께 감소에 따라, 메모리의 동작 횟수와 데이터 보존 시간의 감소등의 문제점들로 인해 기술적인 한계점에 이르렀다. 이러한 문제점들을 해결하기 위한 연구가 활발히 진행되고 있는 가운데, 최근 high-k 물질을 기반으로 하는 Tunnel Barrier Engineered (TEB) 기술이 주목 받고 있다. TBE 기술이란, 터널 절연막을 위해 서로 다른 유전율을 갖는 유전체를 적층함으로써 쓰기/지우기 속도의 향상과 함께, 물리적인 두께 증가로 인한 데이터 보존 시간을 향상 시킬 수 있는 기술이다. 따라서, 본 연구에서는 적층된 터널 절연막에 이용되는 $HfO_2$를 FGA (Forming Gas Annealing)와 RTA (Rapid Thermal Annealing) 공정에 의한 열처리 효과를 알아보기 위해, 온도에 따른 전기적인 특성을 MIS-Capacitor 제작을 통하여 분석하였다. 이를 위해 먼저 Si 기판 위에 $SiO_2$를 약 3 nm 성장시킨 후, $HfO_2$를 Atomic Layer Deposition (ALD) 방법으로 약 8 nm를 증착 하였고, Aluminum을 약 150 nm 증착 하여 게이트 전극으로 이용하였다. 이를 C-V와 I-V 특성을 이용하여 분석함으로 써, 열처리 공정을 통한 $HfO_2$의 터널 절연막 특성이 향상됨을 확인 하였다. 특히, $450^{\circ}C$ $H_2/N_2$(98%/2%) 분위기에서 진행한 FGA 공정은 $HfO_2$의 전하 트랩핑 현상을 줄일 뿐 만 아니라, 낮은 전계에서는 낮은 누설 전류를, 높은 전계에서는 높은 터널링 전류가 흐르는 것을 확인 하였다. 이와 같은 전압에 대한 터널링 전류의 민감도의 향상은 비휘발성 메모리 소자의 쓰기/지우기 특성을 개선할 수 있음을 의미한다. 반면 $N_2$ 분위기에서 실시한 RTA 공정에서는, 전하 트랩핑 현상은 감소 하였지만 FGA 공정 후 보다는 전하 트랩핑 현상이 더 크게 나타났다. 따라서, 적층된 터널 절연막은 적절한 열처리 공정을 통하여 비휘발성 메모리 소자의 성능을 향상 시킬 수 있음이 기대된다.

  • PDF

Effects of Heating Condition and Additives on Rheology of Squid Meat Paste Products (오징어 연제품의 물성에 미치는 가열조건과 첨가제의 영향)

  • 배태진;김해섭;최옥수
    • Journal of Life Science
    • /
    • v.13 no.4
    • /
    • pp.481-491
    • /
    • 2003
  • A squid meat has not been utilized for gel products because of its lower gel forming ability. The objectives of this study were as followed; 1) the optimum heating condition on squid meat paste products and 2) the optimum added level for jelly strength of squid meat paste products. Optimum heating conditions of squid meat kamaboko were as followed; setting (pre-heating) at 15$^{\circ}C$ or 55$^{\circ}C$ for 2 hours and heating at 90$^{\circ}C$ for 60 minutes. Effect for jelly strength of starch additives wheat starch, potato starch and com starch were examined. The jelly strength of heat induced gels differed from the levels of additives. In case of adding starch, potato starch was resulted in the superior jelly strength than the other starchs, wheat starch and corn starch, at any levels. Optimum concentration was 10%(w/w) at every additives. Folding test value was B at added 10% and this value was mean good product. Data of jumbo and flying squid meat paste products added potato starch, corn starch and wheat starch of 10% were shown below, jelly strengths were 858${\pm}$34∼1020${\pm}$37gㆍcm and 966${\pm}$33∼l148${\pm}$45gㆍcm and moisture contents were 72.43∼73.04% and 71.61∼72.78%, respectively. To adding edible agar and sea tangle, showed the highest jelly strength (edible agar>sea tangle, flying squid>jumbo squid) at added 0.5%(w/w) concentration.

A study on the Synthesis end Properties of Polyurethane Resin Based on PPG as a Glycol (폴리프로필렌글리콜을 글리콜 성분으로 하는 폴리우레탄 수지의 합성 및 물성에 관한 연구)

  • Yoo, Kil-Sang;Choi, Sang-Goo
    • Elastomers and Composites
    • /
    • v.35 no.3
    • /
    • pp.205-214
    • /
    • 2000
  • The polyurethane resin was prepared by the reaction of tolylenediisocyanate(TDI) and polypropyleneglycol(PPG). Physical properties of the resin were investigated experimentally. Charging catalyst before TDI-dropping induced the rapid increase of viscosity. On the other hand, charging catalyst after TDI-dropping resulted in mild stability without immoderate generation of heat on reaction. The use of phosphoric acid as catalyst led to low viscosity by restraining side-reaction such as forming of branch-chain, buret reaction and allopanate reaction, but it showed low cross-link density and slow drying. The curing speed was more influenced by structures of molecules rather than NCO/OH ratio. Including PPG 400 over 30 wt % showed excellent adhesive strength due to increase of crosslink density.

  • PDF

The Impact of Comfort of built Environment and Microclimate on Outdoor Activities in Urban Space (건조환경의 쾌적성과 미기후가 도시공간의 외부활동 지속에 미치는 영향 분석)

  • Jeong, Yunnam;Lee, Gunwon
    • Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology
    • /
    • v.9 no.5
    • /
    • pp.565-575
    • /
    • 2019
  • This study aimed to examine the influence of physical environment, microclimate, and comfort on sustaining outdoor activities. This study has identified the main factors that influence sustaining outdoor activities as physical environment, comfort in the physical environment, microclimate and microclimate comfort. For analysis, the study conducted the investigation on pedestrian walkability during spring, summer and winter of the year 2017. The microclimate levels were also recorded at the same time. The method of logit regression analysis was used to analyze these outcomes. The result showed that the comfort and safety of the physical environment as well as the ideal climatic conditions, in terms of temperature, wind level, and solar insolation, were related to sustaining outdoor activities. Also, walking and shopping in the physical and climatic environment were the factors that were found to be more influenced than the act of remaining in a place and forming conversations.

Analysis of roughness of wave hair formed by thermal perm (열 펌으로 형성된 웨이브 모발의 거칠기 분석)

  • Park, Jang-Soon;Lim, Sun-Nye
    • Journal of the Korea Convergence Society
    • /
    • v.12 no.7
    • /
    • pp.235-241
    • /
    • 2021
  • Appearance management through hair beauty forms the basis of the beauty industry, while permanent waves using heat are often used in hair salons, but hair damage due to thermal permanent wave treatment is an inevitable reality. Therefore, this study was conducted for the purpose of presenting an efficient method for thermal permanent wave that can further increase hair wave formation ability and minimize customer's hair damage. After collecting virgin hair from the occipital region, thermal rod pretreatment and thermal permanent wave treatment were performed, and hair roughness analysis and 3D-image were studied using an Atomic Force Microscope. As a result of the study, both the average roughness (Ra) and the ten point average roughness (Rz) were calculated as 223 nm and 853 nm for 4 sections, respectively, showing the highest values. Although the number of samples of the experimental data is limited, the wave forming power can be further increased through this study, and it is expected that it will be practically possible to propose an objective method for thermal permanent wave that can minimize hair damage as well as protect the cuticle of the customer's hair.Judge.

Optimum Combination of Thermoplastic Formability and Electrical Conductivity in Al-Ni-Y Metallic Glass

  • Na, Min Young;Park, Sung Hyun;Kim, Kang Cheol;Kim, Won Tae;Kim, Do Hyang
    • Metals and materials international
    • /
    • v.24 no.6
    • /
    • pp.1256-1261
    • /
    • 2018
  • Both thermoplastic formability and electrical conductivity of Al-Ni-Y metallic glass with 12 different compositions have been investigated in the present study with an aim to apply as a functional material, i.e. as a binder of Ag powders in Ag paste for silicon solar cell. The thermoplastic formability is basically influenced by thermal stability and fragility of supercooled liquid which can be reflected by the temperature range for the supercooled liquid region (${\Delta}T_x$) and the difference in specific heat between the frozen glass state and the supercooled liquid state (${\Delta}C_p$). The measured ${\Delta}T_x$ and ${\Delta}C_p$ values show a strong composition dependence. However, the composition showing the highest ${\Delta}T_x$ and ${\Delta}C_p$ does not correspond to the composition with the highest amount of Ni and Y. It is considered that higher ${\Delta}T_x$ and ${\Delta}C_p$ may be related to enhancement of icosahedral SRO near $T_g$ during cooling. On the other hand, electrical resistivity varies with the change of Al contents as well as with the change of the volume fraction of each phase after crystallization. The composition range with the optimum combination of thermoplastic formability and electrical conductivity in Al-Ni-Y system located inside the composition triangle whose vertices compositions are $Al_{87}Ni_3Y_{10}$, $Al_{85}Ni_5Y_{10}$, and $Al_{86}Ni_5Y_9$.

A Study on the Debinding Process of High Purity Alumina Ceramic Fabricated by DLP 3D Printing (DLP 3D 프린팅으로 제작된 고순도 알루미나 세라믹 탈지 공정 연구)

  • Lee, Hyun-Been;Lee, Hye-Ji;Kim, Kyung-Ho;Ryu, Sung-Soo;Han, Yoonsoo
    • Journal of Powder Materials
    • /
    • v.27 no.6
    • /
    • pp.490-497
    • /
    • 2020
  • The 3D printing process provides a higher degree of freedom when designing ceramic parts than the conventional press forming process. However, the generation and growth of the microcracks induced during heat treatment is thought to be due to the occurrence of local tensile stress caused by the thermal decomposition of the binder inside the green body. In this study, an alumina columnar specimen, which is a representative ceramic material, is fabricated using the digital light process (DLP) 3D printing method. DTG analysis is performed to investigate the cause of the occurrence of microcracks by analyzing the debinding process in which microcracks are mainly generated. HDDA of epoxy acrylates, which is the main binder, rapidly debinded in the range of 200 to 500℃, and microcracks are observed because of real-time microscopic image observation. For mitigating the rapid debinding process of HDDA, other types of acrylates PETA, PUA, and MMA are added, and the effect of these additives on the debinding rate is investigated. By analyzing the DTG in the 25 to 300℃ region, it is confirmed that the PETA monomer and the PUA monomer can suppress the rapid decomposition rate of HDDA in this temperature range.

Improved photoresponsivity of AlGaN UV photodiode using antireflective nanostructure (반사방지 나노 구조체를 이용한 AlGaN UV 광다이오드의 광반응도 향상)

  • Dac, Duc Chu;Choi, June-Heang;Kim, Jeong-Jin;Cha, Ho-Young
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.24 no.10
    • /
    • pp.1306-1311
    • /
    • 2020
  • In this study, we proposed an anti-reflective nano-structure to improve the photoresponsivity of AlGaN UV photodiode that can be used as a receiver in a solar blind UV optical communication system. The anti-reflective nano-structure was fabricated by forming Ni nano-clusters on SiO2 film followed by etching the underneath SiO2 film. A sample with the anti-reflective nano-structure exhibited lower surface reflection along with less dependency on the wavelength in comparison with a sample without the nano-structure. Finally, a UV photodiode was fabricated by applying an anti-reflective structure produced by heat-treating a 2 nm-thick Ni layer. The photodiode fabricated with the proposed nano-structure exhibited noticeable improvement in the photoresponsivity at the wavelength range from 240 nm to 270 nm in comparison with the same photodiode with a SiO2 film without the nano-structure.