DOI QR코드

DOI QR Code

Optimum Combination of Thermoplastic Formability and Electrical Conductivity in Al-Ni-Y Metallic Glass

  • Na, Min Young (Department of Materials Science and Engineering, Yonsei University) ;
  • Park, Sung Hyun (Department of Materials Science and Engineering, Yonsei University) ;
  • Kim, Kang Cheol (Department of Materials Science and Engineering, Yonsei University) ;
  • Kim, Won Tae (Laser and Optical Information Engineering, Cheongju University) ;
  • Kim, Do Hyang (Department of Materials Science and Engineering, Yonsei University)
  • Received : 2018.02.23
  • Accepted : 2018.04.19
  • Published : 2018.11.20

Abstract

Both thermoplastic formability and electrical conductivity of Al-Ni-Y metallic glass with 12 different compositions have been investigated in the present study with an aim to apply as a functional material, i.e. as a binder of Ag powders in Ag paste for silicon solar cell. The thermoplastic formability is basically influenced by thermal stability and fragility of supercooled liquid which can be reflected by the temperature range for the supercooled liquid region (${\Delta}T_x$) and the difference in specific heat between the frozen glass state and the supercooled liquid state (${\Delta}C_p$). The measured ${\Delta}T_x$ and ${\Delta}C_p$ values show a strong composition dependence. However, the composition showing the highest ${\Delta}T_x$ and ${\Delta}C_p$ does not correspond to the composition with the highest amount of Ni and Y. It is considered that higher ${\Delta}T_x$ and ${\Delta}C_p$ may be related to enhancement of icosahedral SRO near $T_g$ during cooling. On the other hand, electrical resistivity varies with the change of Al contents as well as with the change of the volume fraction of each phase after crystallization. The composition range with the optimum combination of thermoplastic formability and electrical conductivity in Al-Ni-Y system located inside the composition triangle whose vertices compositions are $Al_{87}Ni_3Y_{10}$, $Al_{85}Ni_5Y_{10}$, and $Al_{86}Ni_5Y_9$.

Keywords

References

  1. A. Wiest, G. Duan, M.D. Demetriou, L.A. Wiest, A. Peck, G. Kaltenboeck, B. Wiest, W.L. Johnson, Acta Mater. 56, 2625 (2008) https://doi.org/10.1016/j.actamat.2008.02.001
  2. G. Kumar, A. Desai, J. Schroers, Adv. Mater. 23, 461 (2011) https://doi.org/10.1002/adma.201002148
  3. M. Carmo, R.C. Sekol, S. Ding, G. Kumar, J. Schroers, A.D. Taylor, ACS Nano 5, 2979 (2011) https://doi.org/10.1021/nn200033c
  4. R.C. Sekol, G. Kumar, M. Carmo, F. Gittleson, N. Hardesty-Dyck, S. Mukherjee, J. Schroers, A.D. Taylor, Small 9, 2081 (2013) https://doi.org/10.1002/smll.201201647
  5. S.Y. Kim, S.J. Kim, S.S. Jee, J.M. Park, K.H. Park, S.C. Park, E.A. Cho, J.H. Lee, I.Y. Song, S.M. Lee, I.T. Han, K.R. Lim, W.T. Kim, J.C. Park, J. Eckert, D.H. Kim, E.S. Lee, Sci. Rep. 3, 2185 (2013) https://doi.org/10.1038/srep02185
  6. K.C. Kim, K.R. Lim, E.S. Lee, W.T. Kim, A. Gebert, J. Eckert, D.H. Kim, Corros. Sci. 77, 1 (2013) https://doi.org/10.1016/j.corsci.2013.08.010
  7. A. Inoue, Prog. Mater. Sci. 43, 365 (1998) https://doi.org/10.1016/S0079-6425(98)00005-X
  8. A. Peker, W.L. Johnson, Appl. Phys. Lett. 64, 2342 (1993)
  9. H.W. Kui, A.L. Greer, D. Turnbull, Appl. Phys. Lett. 45, 615 (1984) https://doi.org/10.1063/1.95330
  10. W.N. Myung, K.H. Parkxs, D.H. Jang, L. Battezzati, T. Zhang, A. Inoue, T. Masumoto, Mater. Sci. Eng. A 226, 406 (1997)
  11. S.H. Hong, J.T. Kim, H.J. Park, Y.S. Kim, Y.S. Na, K.R. Lim, J.K. Lee, J.H. Lee, W.M. Wang, J.M. Park, K.B. Kim, Sci. Adv. Mater. 8, 1989 (2016) https://doi.org/10.1166/sam.2016.2800
  12. S.H. Hong, J.T. Kim, S.C. Mun, Y.S. Kim, H.J. Park, Y.S. Na, K.R. Lim, J.M. Park, K.B. Kim, Intermetallics 91, 90 (2017) https://doi.org/10.1016/j.intermet.2017.08.016
  13. C.A. Angell, Science 267, 1924 (1995) https://doi.org/10.1126/science.267.5206.1924
  14. X. Li, X. Bian, L. Hu, Y. Wu, J. Guo, J. Zhang, J. Appl. Phys. 101, 103540 (2007) https://doi.org/10.1063/1.2736345
  15. A. Takeuchi, A. Inoue, Mater. Trans. JIM 41, 1372 (2000) https://doi.org/10.2320/matertrans1989.41.1372
  16. X. Li, X. Bian, L. Hu, Phys. Lett. A 374, 3784 (2010) https://doi.org/10.1016/j.physleta.2010.07.029
  17. J. Ding, Y.Q. Cheng, H. Sheng, E. Ma, Phys. Rev. B 85, 060201(R) (2012) https://doi.org/10.1103/PhysRevB.85.060201
  18. Q. Wang, C.T. Liu, Y. Yang, Y.D. Dong, J. Lu, Phys. Rev. Lett. 106, 215505 (2011) https://doi.org/10.1103/PhysRevLett.106.215505
  19. S.O. Kasap, Principles of Electronic Materials and Devices, 3rd edn. (McGraw Hill, New York, 2006)
  20. V. Raghavan, JPEDAV 31, 57 (2010) https://doi.org/10.1007/s11669-009-9625-8
  21. V.C. Sricastava, S.N. Ojha, Bull. Mater. Sci. 28, 125 (2005) https://doi.org/10.1007/BF02704231

Cited by

  1. WITHDRAWN: Recent advances in multicomponent NiTi-based shape memory alloy using metallic glass as a precursor vol.118, pp.None, 2018, https://doi.org/10.1016/j.pmatsci.2020.100756