• 제목/요약/키워드: Heat Exchanger Optimization

검색결과 94건 처리시간 0.032초

평행류 열교환기의 열.유동 특성에 대한 설계인자의 최적화 (Optimization of Design Factors for Thermal and Flow Characteristics of a Parallel Flow Heat Exchanger)

  • 정길완;이관수
    • 대한기계학회논문집B
    • /
    • 제24권5호
    • /
    • pp.640-651
    • /
    • 2000
  • For the heat and fluid flow analyses of a parallel flow heat exchanger, an improved model considering the effect of flat tube with micro-channels is proposed. The effect of flow distribution on the thermal performance of a heat exchanger is numerically investigated. The flow distribution is examined by varying geometrical parameters, i.e., the position of the separators and the inlet/outlet, and the aspect ratio of micro-channels of the heat exchanger. The flow nonuniformities along the paths of the heat exchanger are proposed and observed to evaluate the thermal performance of the heat exchanger. The optimization using ALM method has been accomplished by minimizing the flow nonuniformity. It is found that the heat transfer rate of the optimized model is increased by 6.0% of that of the reference heat exchanger model, and the pressure drop by 0.4%

평행류 열교환기의 열.유동 해석 및 최적화 (Thermal and flow analysis for the optimization of a parallel flow heat exchanger)

  • 이관수;정지완;유재흥
    • 대한기계학회논문집B
    • /
    • 제22권2호
    • /
    • pp.229-239
    • /
    • 1998
  • The present paper examines the thermal and flow characteristics of a parallel flow heat exchanger and investigates the effects of the parameters on thermal performance by defining the flow nonuniformity. Thermal performance of a parallel flow heat exchanger is maximized by the optimization using Newton's searching method. The flow nonuniformity is chosen as an object function. The parameters such as the locations of separator, inlet, and outlet are expected to have a large influence on thermal performance of a parallel flow heat exchanger. The effect of these parameters are quantified by flow nonuniformity. The results show that the optimal locations of inlet and outlet are 19.73 mm and 10.9 mm, respectively. It is also shown that the heat transfer increases by 7.6% and the pressure drop decreases by 4.7%, compared to the reference model.

근사최적화 기법을 이용한 히트펌프용 마이크로 채널 응축기 설계 (Design of a Micro-Channel Heat Exchanger for Heat Pump Using Approximate Optimization Method)

  • 서석원;예휘열;이관수
    • 설비공학논문집
    • /
    • 제24권3호
    • /
    • pp.256-264
    • /
    • 2012
  • A general procedure for the optimal design of a micro-channel heat exchanger for heat pump systems is presented. For this design, a performance analysis program that can reflect the various geometric variables of the micro-channel heat exchanger was developed. The deviation between simulated and experiment results of previous research was within 4% for the heat transfer rate. To prove the feasibility of the optimal design process, the performance of the reference heat exchanger was compared to that of the optimized heat exchanger. The $JF_{air}$ and PECv of the optimized heat exchanger were enhanced by 14% and 26%, respectively.

반응표면법을 이용한 Cooling Air Cooler 열교환기의 최적 설계 (Optimum Design of a Cooling Air Cooler Heat Exchanger by Using a Response Surface Method)

  • 김성수;정효민;정한식
    • 동력기계공학회지
    • /
    • 제21권3호
    • /
    • pp.85-92
    • /
    • 2017
  • Global air traffic is forecast to grow at an average annual rate of around 5% in the next 20 years. The continuous growth of air traffic and raised environmental awareness put increasing pressure on aero engine manufacturers to reduce fuel burn and emissions. NEWAC are a new integrated program of the European Union with focus on innovative core engine concepts to achieve this problem. In this paper, Within NEWAC, active core engine configurations will be investigated. the investigation is focused on the optimal design of the CAC heat exchanger for active core. For optimal design of he CAC heat exchanger, the HTFS of basic design of heat exchanger are analyzed so as to proceed an optimization routines based on Response Surface Method(RSM) and Design of Experiment(DOE). As a result, CAC heat exchanger optimized by 1.0314 lb/s mass flow rate and 3.9058 mm TP of tube layout and 206.8181 mm height of heat exchanger and 918 tube number for heat transfer and pressure drop. We confirm the design optimization using RSM and DOE is useful on complex structure of heat exchanger.

내부핀이 부착된 원형관 열교환기의 형상 최적화 (Shape Optimization of a Heat Exchanger with Internally Finned Tube)

  • 이주희;이상환;박경우;최동훈
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 춘계학술대회
    • /
    • pp.1418-1423
    • /
    • 2004
  • Optimization of a heat exchanger with internally finned circular tubes has been performed for three-dimensional periodically fully developed turbulent flow and heat transfer. The design variables of fin number N, fin width ($d_1,d_2$) and fin height(H), are numerically optimized for the limiting conditions of $N=22{\sim}37$, $d_1=0.5{\sim}1.5$ mm, $d_2=0.5{\sim}1.5$ mm, $H=0.1{\sim}1.5$. Due to the periodic boundary conditions along main flow direction, the three layers of meshes are considered. The CFD and the mathematical optimization are coupled to optimize the heat exchanger. The flow and thermal fields are predicted using the finite volume method and the optimization is carried out by using the sequential quadratic programming (SQP) method which is widely used in the constrained nonlinear optimization problem.

  • PDF

휜-관 열교환기의 착상 성능 최적화 (Optimization of Frosting Performance of a Fin-Tube Heat Exchanger)

  • 양동근;이관수
    • 설비공학논문집
    • /
    • 제17권11호
    • /
    • pp.974-980
    • /
    • 2005
  • The optimization of design factors on the frosting performance of a fin-tube heat exchanger is carried out using Taguchi method. The fin spacings of the heat exchanger are selected as design factors. Optimum values of the design factors under operating conditions of a household refrigerator/freezer are proposed. The average heat transfer rate and operating time of the optimum models, compared to those of a reference model, are increased at most by $6.5\%$ and $12.9\%$, respectively.

응축 가스보일러의 연소기와 열교환기의 최적화 연구 (The Study on the Optimization of Burner and Heat Exchanger for Condensing Gas Boiler)

  • 박준규;이석희;정영식;이창언;금성민
    • 한국에너지공학회:학술대회논문집
    • /
    • 한국에너지공학회 2000년도 춘계 학술발표회 논문집
    • /
    • pp.201-207
    • /
    • 2000
  • This study was carried out to optimize burner and heat exchanger of the condensing gas boiler which can save energy by utilizing latent heat of combustion gas and reduce pollutant in exhaust gas. The heat exchanger of the gas boiler was composed of three parts, which were an upper. lower , and coil heat exchanger . The upper heat exchanger was placed outside of the premixed burner and a lower heat exchanger was located under the upper heat exchanger. And, coil heat exchanger rounded the outer surface of an upper and lower heat exchanger. The boiler designed by this research reaches turn-down ratio 4 : 1 in the domain of equivalence ratio 0.75-0.8 and thermal efficiency of 97% . Emission of NOx and CO concentration was under 20ppm and 140ppm at equivalence ratio 0.8 . When diameter of the burner replace 60mm by 50mm. emission of CO was reduced about 50ppm remarkably.

  • PDF

Multi-objective optimization of printed circuit heat exchanger with airfoil fins based on the improved PSO-BP neural network and the NSGA-II algorithm

  • Jiabing Wang;Linlang Zeng;Kun Yang
    • Nuclear Engineering and Technology
    • /
    • 제55권6호
    • /
    • pp.2125-2138
    • /
    • 2023
  • The printed circuit heat exchanger (PCHE) with airfoil fins has the benefits of high compactness, high efficiency and superior heat transfer performance. A novel multi-objective optimization approach is presented to design the airfoil fin PCHE in this paper. Three optimization design variables (the vertical number, the horizontal number and the staggered number) are obtained by means of dimensionless airfoil fin arrangement parameters. And the optimization objective is to maximize the Nusselt number (Nu) and minimize the Fanning friction factor (f). Firstly, in order to investigate the impact of design variables on the thermal-hydraulic performance, a parametric study via the design of experiments is proposed. Subsequently, the relationships between three optimization design variables and two objective functions (Nu and f) are characterized by an improved particle swarm optimization-backpropagation artificial neural network. Finally, a multi-objective optimization is used to construct the Pareto optimal front, in which the non-dominated sorting genetic algorithm II is used. The comprehensive performance is found to be the best when the airfoil fins are completely staggered arrangement. And the best compromise solution based on the TOPSIS method is identified as the optimal solution, which can achieve the requirement of high heat transfer performance and low flow resistance.

내부휜이 부착된 원형관 열교환기의 열/유동 해석 및 최적설계 (Flow/Heat Transfer Analysis and Shape Optimization of a Heat Exchanger with Internally Finned Tube)

  • 이주희;이상환;임효재;박경우
    • 대한기계학회논문집B
    • /
    • 제29권4호
    • /
    • pp.460-468
    • /
    • 2005
  • Analyses of flow and heat transfer characteristics and shape optimization of internally finned circular tubes have been performed for three-dimensional periodically fully developed turbulent flow and heat transfer. CFD and mathematical optimization are coupled in order to optimize the shape of heat exchanger. The design variables such as fin widths $(d_{1},\;d_{2})$ and fin height (h) are numerically optimized by minimizing the pressure loss and maximizing the heat transfer rate for limiting conditions of $d_{1}=0.2\~1.5\;mm,\;d_{2}=0.2\~1.5\;mm,$ and $h=0.2\~1.5mm$. Due to the periodic boundary conditions along main flow direction, the three layers of meshes are considered. The flow and thermal fields are predicted using the finite volume method and the optimization is carried out by means of the sequential quadratic programming (SQP) method which is widely used in the constrained nonlinear optimization problem.

열전모듈 제습기의 제습 능력 및 에너지 효율 극대화를 위한 열교환기 용량 최적화 (Optimization of Heat exchanger Capacity to Maximize the Performance and Energy Efficiency of TEM Dehumidifiers)

  • 이태희
    • 한국지열·수열에너지학회논문집
    • /
    • 제17권3호
    • /
    • pp.13-20
    • /
    • 2021
  • The capacity optimization of the heat exchanger of the TEM dehumidifier was performed through numerical analysis. If the ratio of the size of heat exchangers on the cold and hot surfaces of the TEM is not appropriate, the larger the size of the heat exchanger results the lower performance and efficiency. Optimizing the ratio of heat exchangers on the cold surface of TEM can improve the performance and the efficiency compared to when the ratio is 50%. The optimal proportion of cold surface heat exchangers is inversely proportional to the sum of the size of the heat exchangers on the cold and hot surfaces. When the optimum ratio of cold surface heat exchanger was applied, the larger the sum of size of the two heat exchangers results the greater the improvement of the performance and efficiency, compared to when the ratio of cold surface heat exchangers is 50%.