Optimization of Frosting Performance of a Fin-Tube Heat Exchanger

휜-관 열교환기의 착상 성능 최적화

  • Yang Dong-Keun (Graduate School, Department of Mechanical Engineering, Hanyang University) ;
  • Lee Kwan-Soo (School of Mechanical Engineering, Hanyang University)
  • Published : 2005.11.01

Abstract

The optimization of design factors on the frosting performance of a fin-tube heat exchanger is carried out using Taguchi method. The fin spacings of the heat exchanger are selected as design factors. Optimum values of the design factors under operating conditions of a household refrigerator/freezer are proposed. The average heat transfer rate and operating time of the optimum models, compared to those of a reference model, are increased at most by $6.5\%$ and $12.9\%$, respectively.

Keywords

References

  1. Yonko, J. D. and Sepsy, C. F., 1967, An investigation of the thermal conductivity of frost while forming on a flat horizontal plate, ASHRAE Trans, Int. J. Heat Mass Transfer, Vol. 73, No.2, pp. 1.1-1.11
  2. Mao, Y., Besant, R. W. and Chen, H., 1999, Frost characteristics and heat transfer on a flat plate under freezer operating conditions: Part 1, Experimentation and correlations, ASHRAE Trans., Vol. 105, No. 2, pp. 231-251
  3. Yang, D. K. and Lee, K. S., 2004, Dimensionless correlations of frost properties on a cold plate, Int. J. Refrigeration, Vol. 27, No. 1, PP. 89-96 https://doi.org/10.1016/S0140-7007(03)00118-X
  4. Jones, B. W. and Parker, J. D., 1975, Frost formation with varying environmental parameters, J. Heat Transfer, Vol. 97, pp. 255-259 https://doi.org/10.1115/1.3450350
  5. Lee, K. S., Kim, W. S. and Lee, T. H., 1997, A one-dimensional model for frost formation on a cold flat surface, Int. J. Heat Mass Transfer, Vol. 40, No. 18, pp.4359-4365 https://doi.org/10.1016/S0017-9310(97)00074-4
  6. Yun, R., Kim, Y. and Min, M. K., 2002, Modeling of frost growth and frost properties with airflow over a flat plate, Int. J. Refrigeration, Vol. 25, No. 3, pp. 362-371 https://doi.org/10.1016/S0140-7007(01)00026-3
  7. Lee, K. S., Jhee, S. and Yang, D. K., 2003, Prediction of the frost formation on a cold flat surface, Int. J. Heat Mass Transfer, Vol. 46, No. 20, pp. 3789-3796 https://doi.org/10.1016/S0017-9310(03)00195-9
  8. Mago, P.J. and Sherif, S. A., 2003, Heat and mass transfer on a cylinder surface in cross flow under supersaturated frosting conditions, Int. J. Refrigeration, Vol. 26, No.8, pp. 889-899
  9. Raiu, S. P. and Sherif, S. A., 1993, Frost formation and heat transfer on circular cylinders in cross-flow, Int. J. Refrigeration, Vol. 16, No. 6, pp. 390-401 https://doi.org/10.1016/0140-7007(93)90056-E
  10. Jhee, S., Lee, K. S. and Kim, W. S., 2002, Effect of surface treatments on the frosting/ defrosting behavior of a fin-tube heat exchanger, Int. J. Refrigeration, Vol. 25, No.8, pp.1047-1053 https://doi.org/10.1016/S0140-7007(02)00008-7
  11. Yan, W. M., Li, H. Y., Wu, Y. J., Lin, J. Y. and Chang, W. R., 2003, Performance of finned tube heat exchangers operating under frsoting conditions, Int. J. Heat Mass Transfer, Vol. 46, No.5, pp. 871-877 https://doi.org/10.1016/S0017-9310(02)00346-0
  12. Deng, D., Xu, L. and Xu, S., 2003, Experimental investigation on the performance of air cooler under frosting conditions, Applied Thermal Engineering, Vol. 23, No.8, pp.905-912 https://doi.org/10.1016/S1359-4311(03)00022-X
  13. Kondepudi, S. N. and ON' eal, D. L., 1993, Performance of finned-tube heat exchangers under frosting conditions: I. Simulation model, Int. J. Refrigeration, Vol. 16, No. 3, pp. 175-180 https://doi.org/10.1016/0140-7007(93)90045-A
  14. Seker, D., Karatas, H. and Egrican, N., 2004, Frost formation on fin-and-tube heat exchangers: Part I. Modeling of frost formation on fin-and-tube heat exchangers, Int. J. Refrigeration, Vol. 27, No. 4, pp. 367-374 https://doi.org/10.1016/j.ijrefrig.2003.12.003
  15. Yang, D. K. and Lee, K. S., 2005, Analysis of frosting performance of the fin-tube heat exchanger, Korean J. of Air-Conditioning and Refrigeration Engineering, Vol. 17, No. 11, pp. 965-973