• Title/Summary/Keyword: Heat Analysis

Search Result 9,599, Processing Time 0.062 seconds

Comparison of Stress Response in Diallel Crossed Korean Domestic Chicken Breeds (토종 종계를 이용한 이면 교배조합 계통 간 스트레스 반응정도 비교 분석)

  • Cho, Eun Jung;Park, Ji Ae;Choi, Eun Sik;Sohn, Sea Hwan
    • Korean Journal of Poultry Science
    • /
    • v.43 no.2
    • /
    • pp.77-88
    • /
    • 2016
  • To establish a new synthetic Korean meat chicken breed, we tested $5{\times}5$ diallel cross mating experiment with domestic chicken breeds. Comparing stress responses among diallel crossed chicken breeds, we analyzed telomere length, DNA damage and expressions of heat shock protein genes (HSPs) as the markers of the stress response. The telomere length was measured by quantitative fluorescence in situ hybridization on the nuclei of lymphocytes. The expression levels of HSP-70, $HSP-90{\alpha}$ and $HSP-90{\beta}$ genes were analyzed by quantitative real-time polymerase chain reaction in lymphocytes. The DNA damage rate of lymphocytes was quantified by the comet assay known as the single cell gel electrophoresis. In results, there were significant differences in the values of the stress markers such as telomere length, HSPs and DNA damage rate, and also were significant differences in viabilities and body weights among the $5{\times}5$ diallel crossed chicken breeds. The telomere shortening rate, expression values of HSPs and DNA damage rate were significant low in W and Y crossed chickens compare to the others, but GG pure breed showed the highest values in the 25 crossed chickens. Estimating correlation coefficient, the survival rate positively correlated to telomere length, but negatively correlated to the expression levels of HSP-70, $HSP-90{\alpha}$, $HSP-90{\beta}$ genes and to the value of % DNA in tail as DNA damage rate. The expression levels of HSP-70, $HSP-90{\alpha}$ and $HSP-90{\beta}$ genes of dead chickens had significantly higher than those of survival chickens. According to the results on the stress marker analysis, it would be considered that the crossed breeds had more stress resistant than the pure breeds, and the crossed chickens with a light strain such as W or Y were relatively resistant to stress, but the crossed chickens with a heavy strain such as G, H, F were susceptible to stress.

A Study on Real-Time Defect Detection Using Ultrasound Excited Thermography (초음파 서모그라피를 이용한 실시간 결함 검출에 대한 연구)

  • Cho, Jai-Wan;Seo, Yong-Chil;Jung, Seung-Ho;Jung, Hyun-Kyu;Kim, Seung-Ho
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.26 no.4
    • /
    • pp.211-219
    • /
    • 2006
  • The UET(ultrasound excited thermography) for the ,eat-time diagnostics of the object employs an infrared camera to image defects of the surface and subsurface which are locally heated using high-frequency putted ultrasonic excitation. The dissipation of high-power ultrasonic energy around the feces of the defects causes an increase In temperature. The defect's image appears as a hot spot (bright IR source) within a dark background field. The UET for nondestructive diagnostic and evaluation is based on the image analysis of the hot spot as a local response to ultrasonic excited heat deposition. In this paper the applicability of VET for fast imaging of defect is described. The ultrasonic energy is injected into the sample through a transducer in the vertical and horizontal directions respectively. The voltage applied to the transducer is measured by digital oscilloscope, and the waveform are compared. Measurements were performed on four kinds of materials: SUS fatigue crack specimen(thickness 14mm), PCB plate(1.8 mm), CFRP plate(3 mm) and Inconel 600 plate (1 mm). A high power ultrasonic energy with pulse durations of 250ms Is injected into the samples in the horizontal and vertical directions respectively The obtained experimental result reveals that the dissipation loss of the ultrasonic energy In the vertical injection is less than that in the horizontal direction. In the cafe or PCB, CFRP, the size of hot spot in the vortical injection if larger than that in horizontal direction. Duration time of the hot spot in the vertical direction is three times as long as that in the horizontal direction. In the case of Inconel 600 plate and SUS sample, the hot spot in the horizontal injection was detected faster than that in the vertical direction

A Study on the Present Condition and Reform Plan of School Health in a Rural Area (한 농촌지역 학교보건의 현황과 개선방안에 관한 연구)

  • Shin, Young-Jeon;Noh, Hak-Jae;Choi, Boyul;Park, Hung-Bae;Kim, Hyun-Joo
    • Journal of the Korean Society of School Health
    • /
    • v.9 no.1
    • /
    • pp.55-67
    • /
    • 1996
  • This research has incorporated a postal survey from the principals, nurse-charging teachers and nurse-teachers of the fiftyfive elementary, middle and high school in Yang-pyeong county area where its supplementary rate of nurse-teachers is less than adequate. It is to analyse the current status of the school health service in the area and to come out with a plan to improve the school health program through the participations of the health related experts of the local community. The survey was done in the two months of period of April to May of 1994. The result of the survey follows. The student population in the Yang-pyeong county area is 13,998 and the school employee population is 904 which counts for about 19.2% of the whole population of the area. However, the supplementary rate of nurse-teachers is only 10.8% (4 in 55 schools) which is very low in terms of relativity. School health committee only exist in 17% of the whole number of schools in the area and 50 of school health committee answered that their activity do not meet the adequate level. Only 54. 3% of the whole school numbers has included the school health finance in their financial plans and the amount set for the school health finance is about 500,000 wons (100,000-1,600,000 wons). 64.9% of the schools in the Yang-pyeong county area have the permanent nursing room established in the school. But, often than the equipment for a simple physical examinations, their supply of the health related equipments are less than adequate. Particitations of school doctor in the school health service is at only 67.6% which pretty much include only the physical examinations. Nurse-charging teachers consider their utmost important role is to teach health education but, they answered that they spent most of their times and efforts on physical examinations & immunizations. The average number of students visition to the nursing room is 2.5 persons and complains for basic discomfort as headache, concussion, stomachache and indigestion problems and usual pills used are the analgesics and digestives. Physical examination is done in the most schools every year but, 51.4% of nurse-charging teachers answered the physical examination does not really help. About the emergency treatment ability, 75.7% reports that both manpower & equipment are short. The school food services are present in only 8 schools (21.6%) but, 89.2% of nurse-charging teachers answer that there is a definite need of the food service. The survey says that the utmost important environmental health and safety factors are the traffic accidents followed by improper heat system, lighting, the stools and desks that do not consider the student physical status The overall evaluation of school health program reports that there are adequate physical examination, immunization, environmental hygiene, and management of safety but, on the other hand, health education, health councelling & management of nursing room are not managed properly. The principals of the survey pool report shortage of public agency support, lack of understanding of school health, shortage of nursing equipments and school health finance as the barrier factors of school health. The nurse-charging teachers report on the same questions as their less than qualitifying expertise, extraload of work upon the nursing affairs, shortage of nursing equipments & school health finance. The head masters & nurse-charging teachers answered that they are desperate for the meetings of nurse-charging teachers, construction of school health councelling system & training education in order to improve school health and if these are available, they will actively participate in them. After the careful analysis of the survey result, it is apparent that through the relations of the manpowers, establishment of community-oriented school health is definitely in need in rural area where there is low supplementary rate of nurse-teachers and poor school health environment.

  • PDF

Upgrading of Quercus mongollica bio-oil by esterification (에스터화 반응을 이용한 신갈나무 바이오오일 품질 개선)

  • Chea, Kwang-Seok;Lee, Hyung-Won;Jeong, Han-Seob;Lee, Jae-Jung;Ju, Young-Min;Lee, Soo-Min
    • Journal of the Korean Applied Science and Technology
    • /
    • v.35 no.4
    • /
    • pp.975-984
    • /
    • 2018
  • Fast pyrolysis bio-oil has unfavorable properties that restrict its use in many applications. Among the main issues are high acidity, instability, and water and oxygen content, which give rise to corrosiveness, polymerization during storage, and a low heating value. Esterification and azeotropic water removal can improve all of these properties. A 500 g of Quercus mongollica which grounded 0.8~1.4 mm was processed into bio-oil via fast pyrolysis for 2 seconds at $550^{\circ}C$. The esterification consists of treating pyrolysis oil with a high boiling alcohol like n-butanol at $70^{\circ}C$ under reduced pressure (100 hPa). All products are analyzed for water mass fraction, viscosity, higher heating value, pH, FT-IR and GC/MS. The water mass fraction can be reduced by 91.4 % (from 31.5 % to below 2.7 %), the viscosity by 65.8 % (from 36.5 to 12.5 cP) and the higher heating value can be increased by 96.8 % (from 3,918 to 7,712 kcal/kg), the pH by 1.3 (from 2.7 to 4.0). FT-IR and GC/MS analysis indicated that labile acids, aldehydes, ketones and lower alcohols were transformed to stable target products. Using this approach, the water content of the pyrolysis oil is reduced significantly. These improvements should allow the utilization of upgraded pyrolysis liquids in standard boilers and as fuel in CHP (Combined heat and power) plants.

Classification, Analysis on Attributes and Sustainable Management Plan of Biotop Established in Pohang City (포항시 비오톱의 유형 구분, 속성 분석 및 복원 방안)

  • Jung, Song Hie;Kim, Dong Uk;Lim, Bong Soon;Kim, A Reum;Seol, Jaewon;Lee, Chang Seok
    • Korean Journal of Ecology and Environment
    • /
    • v.52 no.3
    • /
    • pp.245-265
    • /
    • 2019
  • Biotope, which represents the characteristic habitats of living organisms, need to be identified as essential for the efficient creation and sustainable management of urban ecosystems. This study was carried out to provide the basic information for ecological urban planning by analyzing types and attributes of the biotop established throughout the whole area of the Pohang city, a representative industrial city in Korea. The biotop established in Pohang city is composed of 12 types including forests (coniferous, deciduous, and mixed forests), agricultural fields (rice paddy and upland field), green facilities, river, reservoir, bare ground, residential area, public facilities, commercial area, industrial area, roads, and schools. As a result of analyzing the properties according to biotop types, industrial, commercial and residential areas, which represent urban areas, was dominated by introduced vegetation. Moreover the introduced vegetation is usually composed of exotic plants or modified forms for landscape architecture and horticulture rather than native plants, which reflects ecological property of both region and site. As the distance from the urban center increases, the agricultural field showed a form of typical farmland, whereas the closer it is, the more form of greenhouse farming. Natural green spaces were divided into riparian vegetation established along the stream and forest vegetation. Forest vegetation is consisted of secondary forests (seven communities) and plantations (three communities). The urban landscape of Pohang city is dominated by the industrial area. Among them, the steel industry, which occurs large amounts of heat pollution and carbon dioxide, occupies a large proportion. On the other hand, green space is very insufficient in quantity and inferior in quality. This study proposed several restoration plans and further, a green network, which ties the existing green spaces and the green space to be restored as a strategy to improve the environmental quality in this area.

A Study on Wintering Microclimate Factors of Evergreen Broad-Leaved Trees, in the Coastal Area of Incheon, Korea (인천해안지역의 난온대성 상록활엽수 겨울철 생장에 영향을 미치는 미기후 요인)

  • Kim, Jung-Chul;Kim, Do-Gyun
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.47 no.5
    • /
    • pp.66-77
    • /
    • 2019
  • This study investigated the feasibility of wintering evergreen broad-leaf trees in the Incheon coastal area through a climate analysis. The coldest monthly mean air temperature ranged from $-2.9^{\circ}C{\sim}-1.6^{\circ}C$. The warmth index of the coastal area of Incheon ranged from $98.89^{\circ}C{\cdot}month-109.03^{\circ}C{\cdot}month$, while the minimum air temperature year ranged from $-13.9^{\circ}C{\sim}-3.6^{\circ}C$. This proved that the Incheon coastal area was not suitable for evergreen broad-leaf trees to grow as the warmth index ranges from $101.0^{\circ}C{\cdot}month{\sim}117.0^{\circ}C{\cdot}month$, and the temperature year-round is $-9.2^{\circ}C$ or higher. This suggests the coastal areas of Incheon is not suitable for the growth of evergreen broad-leaf trees, however some evergreen broad-leaf trees lived in some parts of the area. Wind speed reduction and temperature effect simulations were done using Landschaftsanalyse mit GIS program. As a result of the simulations of wind speed reduction and temperature effects affecting the evergreen broad-leaf trees, it was discovered that a coastal wind velocity of 8.6m/sec was alleviated to be 5m/sec~7m/sec when the wind reached the areas where evergreen broad-leaf trees were present. It was also discovered that species that grew in contact with buildings benefited from a temperature increase of $1.1^{\circ}C{\sim}3.4^{\circ}C$ due to the radiant heat released by the building. Simulation results show that the weather factors affecting the winter growth damages of evergreen broad-leaved trees were wind speed reduction and local warming due to buildings. The wind speed reduction by shielding and local warming effects by buildings have enabled the wintering of evergreen broad-leaved trees. Also, evergreen broad-leaved trees growing in the coastal area of Incheon could be judged to be gradually adapting to low temperatures in winter. This study reached the conclusion that the blockage of wind, and the proximity of buildings, are required for successfully wintering evergreen broad-leaf trees in the coastal area of Incheon.

On the Persistence of Warm Eddies in the East Sea (동해 난수성 에디의 장기간 지속에 관하여)

  • JIN, HYUNKEUN;PARK, YOUNG-GYU;PAK, GYUNDO;KIM, YOUNG HO
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.24 no.2
    • /
    • pp.318-331
    • /
    • 2019
  • In this study, comparative analysis is performed on the long-term persisted warm eddies that were generated in 2003 (WE03) and in 2014 (WE14) over the East Sea using the HYCOM reanalysis data. The overshooting of the East Korea Warm Current (EKWC) was appeared during the formation period of those warm eddies. The warm eddies were produced in the shallow Korea Plateau region through the interaction of the EKWC and the sub-polar front. In the interior of the both warm eddies, a homogeneous water mass of about $13^{\circ}C$ and 34.1 psu were generated over the upper 150 m depth by the winter mixing. In 2004, the next year of the generation of the WE03, the amount of the inflow through the western channel of the Korea Strait was larger, while the inflow was lesser than its climatology during 2015 corresponding to the development period of the WE14. The above results suggest that the heat and salt are supplied in the warm eddies through the Tsushima Warm Current (TWC), however the amount of the inflow through the Korea Strait has negligible impact on the long-term persistency of the warm eddies. Both of the warm eddies were maintained more than 18 months near Ulleung island, while they have no common feature on the pathways. In the vicinity of the Ulleung basin, large and small eddies are continuously created due to the meandering of the EKWC. The long-term persisted warm eddies in the Ulleung Island seem to be the results of the interaction between the pre-existed eddies located south of the sub-polar front and fresh eddies induced by the meanderings of the EKWC. The conclusion is also in line with the fact that the long-term persisted warm eddies were not always created when the overshooting of the EKWC was appeared.

Comparative study of volumetric change in water-stored and dry-stored complete denture base (공기중과 수중에서 보관한 총의치 의치상의 체적변화에 대한 비교연구)

  • Kim, Jinseon;Lee, Younghoo;Hong, Seoung-Jin;Paek, Janghyun;Noh, Kwantae;Pae, Ahran;Kim, Hyeong-Seob;Kwon, Kung-Rock
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.59 no.1
    • /
    • pp.18-26
    • /
    • 2021
  • Purpose: Generally, patients are noticed to store denture in water when removed from the mouth. However, few studies have reported the advantage of volumetric change in underwater storage over dry storage. To be a reference in defining the proper denture storage method, this study aims to evaluate the volumetric change and dimensional deformation in case of underwater and dry storage. Materials and methods: Definitive casts were scanned by a model scanner, and denture bases were designed with computer-aided design (CAD) software. Twelve denture bases (upper 6, lower 6) were printed with 3D printer. Printed denture bases were invested and flasked with heat-curing method. 6 upper and 6 lower dentures were divided into group A and B, and each group contains 3 upper and 3 lower dentures. Group A was stored dry at room temperature, group B was stored underwater. Group B was scanned at every 24 hours for 28 days and scanned data was saved as stereolithography (SLA) file. These SLA files were analyzed to measure the difference in volumetric change of a month and Kruskal-Wallis test were used for statistical analysis. Best-fit algorithm was used to overlap and 3-dimensional color-coded map was used to observe the changing pattern of impression surface. Results: No significant difference was found in volumetric changes regardless of the storage methods. In dry-stored denture base, significant changes were found in the palate of upper jaw and posterior lingual border of lower jaw in direction away from the underlying tissue, maxillary tuberosity of upper jaw and retromolar pad area of lower jaw in direction towards the underlying tissue. Conclusion: Storing the denture underwater shows less volumetric change of impression surface than storing in the dry air.

Performance of a Molten Carbonate Fuel Cell With Direct Internal Reforming of Methanol (메탄올 내부개질형 용융탄산염 연료전지의 성능)

  • Ha, Myeong Ju;Yoon, Sung Pil;Han, Jonghee;Lim, Tae-Hoon;Kim, Woo Sik;Nam, Suk Woo
    • Clean Technology
    • /
    • v.26 no.4
    • /
    • pp.329-335
    • /
    • 2020
  • Methanol synthesized from renewable hydrogen and captured CO2 has recently attracted great interest as a sustainable energy carrier for large-scale renewable energy storage. In this study, molten carbonate fuel cell's performance was investigated with the direct conversion of methanol into syngas inside the anode chamber of the cell. The internal reforming of methanol may significantly improve system efficiency since the heat generated from the electrochemical reaction can be used directly for the endothermic reforming reaction. The porous Ni-10 wt%Cr anode was sufficient for the methanol steam reforming reaction under the fuel cell operating condition. The direct supply of methanol into the anode chamber resulted in somewhat lower cell performance, especially at high current density. Recycling of the product gas into the anode gas inlet significantly improved the cell performance. The analysis based on material balance revealed that, with increasing current density and gas recycling ratio, the methanol steam reforming reaction rate likewise increased. A methanol conversion more significant than 90% was achieved with gas recycling. The results showed the feasibility of electricity and syngas co-production using the molten carbonate fuel cell. Further research is needed to optimize the fuel cell operating conditions for simultaneous production of electricity and syngas, considering both material and energy balances in the fuel cell.

Analysis of Microclimate Impact According to Development Scenarios of Vacant Land in Downtown Seoul - A Comparison of Wind Speed and Air Temperature - (서울 도심 공지의 개발 시나리오에 따른 미기후 영향 분석 - 풍속 및 기온 비교 -)

  • Baek, Jiwon;Park, Chan;Park, Somin;Choi, Jaeyeon;Song, Wonkyong;Kang, Dain;Kim, Suryeon
    • Journal of Environmental Impact Assessment
    • /
    • v.30 no.2
    • /
    • pp.105-116
    • /
    • 2021
  • In the city of high population density crowded with buildings, Urban Heat Island (UHI) is intensified, and the city is vulnerable to thermal comfort. The maintenance of vacant land in downtown is treated as a factor that undermines the residential environment, spoils the urban landscape, and decreases the economic vitality of the whole region. Therefore, this study compared the effects on microclimate in the surrounding area according to the development scenarios targeting the vacant land in Songhyeon-dong, Jongno-gu, Seoul. The status quo, green oriented, building oriented and green-building mediation scenarios were established and ENVI-met was used to compare and analyze the impact of changes in wind speed, air temperature and mean radiant temperature (MRT) within 1 km of the target and the target site. The result of inside and 1 km radius the targeted area showed that the seasonal average temperature decreased and the wind speed increased when the green oriented scenario was compared with the current state one. It was expected that the temperature lowered to -0.73 ℃ or increased to 1.5 ℃ in summer, and the wind speed was affected up to 210 meters depending on the scenario. And it was revealed that green area inside the site generally affects inside area, but the layout and size of the buildings affect either internal and external area. This study is expected to help as a decision-making support tool for developing Songhyeon-dong area and to be used to reflect the part related to microclimate on the future environmental effects evaluation system.