• Title/Summary/Keyword: Health beneficial effects

Search Result 727, Processing Time 0.026 seconds

Trends in studies on probiotics, prebiotics, and synbiotics (프로바이오틱스, 프리바이오틱스 및 신바이오틱스 연구동향)

  • Moon, Gi-Seong
    • Food Science and Industry
    • /
    • v.52 no.3
    • /
    • pp.208-219
    • /
    • 2019
  • Probiotics are very closely related to gut microbiome and recognized as beneficial microorganisms for our health. They have various biological effects such as inhibition of pathogenic bacteria, activation of beneficial bacteria, prevention of diarrhea and constipation, enhanced immune activity etc. Prebiotics, non-digestible carbohydrates such as galactooligosaccharide and fructooligosaccharide, are utilized by beneficial gut bacteria such as bifidobacteria and lactobacilli, resulting in production of short chain fatty acids which inhibit pathogenic bacteria in the gut and function for human health. Synbiotics are introduced for synergistic effects when probiotics are combined with prebiotics and now commercially available. At the moment many functional ingredients are developed and commercialized. Probiotics, prebiotics, and synbiotics might be hot items in the functional food market and the values will increase according to the results of human gut microbiome researches. To meet the situation, systematic and scientific studies as well as marketing effects should be accompanied.

Beneficial Effects of Kefir in Preventing and Treating Human Cancers (Kefir를 이용하여 다양한 Cancer 생성 예방 및 치료에 관한 연구)

  • Kim, Dong-Hyeon;Chon, Jung-Whan;Kim, Hyunsook;Lee, Soo-Kyung;Kim, Hong-Seok;Yim, Jin-Hyuk;Song, Kwang-Young;Kang, Il-Byung;Kim, Young-Ji;Jeong, Dana;Park, Jin-Hyeong;Jang, Ho-Seok;Seo, Kun-Ho
    • Journal of Dairy Science and Biotechnology
    • /
    • v.34 no.3
    • /
    • pp.165-172
    • /
    • 2016
  • Kefir, originating from Caucasus, is an acidic, alcoholic fermented milk product with little acidic taste and a creamy consistency. It is recognized in having beneficial effects infor the prevention and treatment of cancer. For example, Kefir has possesses a chemopreventative effect on carcinogenesis. There has recently been a strong focus on fermented milk foods containing a mixture of several functional organic substances and various probiotic microorganisms. Hence, the purpose of this review paper was to evaluate the scientific evidence for the effects of kefir on cancer prevention and treatment. Some of we analyzed and summarized data-relating to the effects of kefir on cancer. The cacers that kefir has an effect on are as follows: colon cancer, breast cancer, leukemia, sarcoma, skin cancer, gastric cancer. This review suggests that (1) kefir could be associated with cancer prevention, (2) kefir has beneficial effects in cancer treatment, and (3) kefir has various bioactive components including peptides, polysaccharides and sphingolipids, which contribute tofor itsthese anti-cancer properties. Furthermore, furthermore, studies were performed in order to obtain as to get the scientific evidence of kefir's anticancer activity: (1) improved protective effectiveness in vivo (human subjects or animal model), (2) isolation and identification of various bioactive components, and (3) mechanisms associated with beneficial effects.

The Effects of the Systemic Follow up Health Care Program on the Health Promotion and the Risk Reduction in Premature Infants and Their Mothers (체계적 건강관리프로그램이 모성과 미숙아의 건강증진 및 질병예방에 미치는 영향에 관한 연구)

  • Ahn Young-Mee
    • Journal of Korean Academy of Nursing
    • /
    • v.34 no.6
    • /
    • pp.1129-1142
    • /
    • 2004
  • Purpose: This research was conducted to evaluate the effects of asystemic follow-up care program on health promotion and risk reduction in 64 high-risk infants(HRI) including premature infants and their mothers. Method: The intervention consisted of systemic NICU education, tele-counseling and 3 home visits in 6 months. The subjects were divided into either the intervention group or the control group receiving the conventional NICU education without the tele-counseling and home visiting. Infant health promotion was measured using physical assessment, types of health problems, reflexes, OPD visiting history, DDST, immunization, feeding assessment, Infant death rate, etc. Maternal self-esteem, postpartum depression and family function were measured using the maternal self-report inventory(MRI), EPDS, and family apgar score(Fapgar), retrospectively. Result: All premature infants in the intervention group were in the normal range of growth and development, and the regular vaccination schedule. The health problems in the intervention group were addressed early so not to develop into adverse effects. The follow-up program for 6 months showed beneficial effects on MRI, EPDS, and Fapgar. Conclusion: A systemic follow-up health care program is beneficial on health promotion and risk reduction in 64 HRI including premature infants and their mothers.

Beneficial Effects of Marine Bioactive Substances on Bone Health, via Osteoarthritis Inhibition and Osteoblast Differentiation

  • Nguyen, Minh Hong Thi;Qian, Zhong-Ji;Jung, Won-Kyo
    • Journal of Marine Bioscience and Biotechnology
    • /
    • v.5 no.4
    • /
    • pp.1-7
    • /
    • 2011
  • Bone health is maintained by balance between bone resorption and bone formation, and bone homeostasis requires balanced interactions between osteoblasts and osteoclasts. Most of drugs and functional foods for bone health have been developed as bone resorption inhibitors, which maintain bone mass by inhibiting the function of osteoclasts. The recent studies have shown beneficial effects of marine natural products on bone health. Therefore, this review is aimed to study effects of marine-derived natural substances on osteoarthritis inhibition via attenuation of MMPs and osteoblastic differentiation via activation of alkaline phosphatase (ALP), osteoclacin (OC), bone morphogenic protein-2 (BMP-2) as an important factor for bone formation, and mineralization. The present review can provide new insights in the osteoblastic differentiation of marine natural products and possibility for their application in bone health supplement.

Bio-functions of Marine Carotenoids

  • Hosokawa, Masashi;Okada, Tomoko;Mikami, Nana;Konishi, Izumi;Miyashita, Kazuo
    • Food Science and Biotechnology
    • /
    • v.18 no.1
    • /
    • pp.1-11
    • /
    • 2009
  • Carotenoids being most important pigments among those occurring in nature, have received increased interest owing to their beneficial effects on human health. An effort is made to review marine carotenoids as important bioactive compounds with reference to their presence, chemical, and biofunctional benefits they afford. The potential beneficial effects of marine carotenoids were particularly focused on astaxanthin and fucoxanthin, major marine carotenoids found in marine animals and aquatic plants, respectively. Both carotenoids show strong antioxidant activity which is attributed to quenching singlet oxygen and scavenging free radicals. The potential role of the carotenoids as dietary antioxidants has been suggested as being one of the main mechanism by which they afford their beneficial health effects such as anticancer activity and anti-inflammatory effect. Only recently, antiobesity effect and antidiabetic effect have been noted as specific and novel bio-functions of fucoxanthin. Nutrigenomic study reveals that fucoxanthin induces uncoupling protein 1 (UCP1) expression in white adipose tissue (WAT) mitochondria to lead to oxidation of fatty acids and heat production in WAT. Fucoxanthin improves insulin resistance and decreases blood glucose level, at least in part, through the down-regulation of tumor necrosis factor $\alpha$ ($TNF{\alpha}$) in WAT of animals.

Beneficial effects of Panax ginseng for the treatment and prevention of neurodegenerative diseases: past findings and future directions

  • Kim, Ki Hyun;Lee, Dahae;Lee, Hye Lim;Kim, Chang-Eop;Jung, Kiwon;Kang, Ki Sung
    • Journal of Ginseng Research
    • /
    • v.42 no.3
    • /
    • pp.239-247
    • /
    • 2018
  • In recent years, several therapeutic drugs have been rationally designed and synthesized based on the novel knowledge gained from investigating the actions of biologically active chemicals derived from foods, plants, and medicinal herbs. One of the major advantages of these naturalistic chemicals is their ability to interact with multiple targets in the body resulting in a combined beneficial effect. Ginseng is a perennial herb (Araliaceae family), a species within the genus Panax, and a highly valued and popular medicinal plant. Evidence for the medicinal and health benefits of Panax ginseng and its components in preventing neurodegeneration has increased significantly in the past decade. The beneficial effects of P. ginseng on neurodegenerative diseases have been attributed primarily to the antioxidative and immunomodulatory activities of its ginsenoside components. Mechanistic studies on the neuroprotective effects of ginsenosides revealed that they act not only as antioxidants but also as modulators of intracellular neuronal signaling and metabolism, cell survival/death genes, and mitochondrial function. The goal of the present paper is to provide a brief review of recent knowledge and developments concerning the beneficial effects as well as the mechanism of action of P. ginseng and its components in the treatment and prevention of neurodegenerative diseases.

Role of n-3 long-chain polyunsaturated fatty acids in human nutrition and health: review of recent studies and recommendations

  • Dael, Peter Van
    • Nutrition Research and Practice
    • /
    • v.15 no.2
    • /
    • pp.137-159
    • /
    • 2021
  • Long-chain (LC) n-3 polyunsaturated fatty acids (n-3 PUFAs), in particular docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA), are nutrients involved in many metabolic and physiological processes, and are referred to as n-3 LCPUFA. They have been extensively studied for their effects in human nutrition and health. This paper provides an overview on metabolism, sources, dietary intake, and status of n-3 LCPUFA. A summary of the dietary recommendations for n-3 LCPUFAs for different age groups as well as specific physiological conditions is provided. Evidence for n-3 LCPUFA in cardiovascular diseases, including new studies, is reviewed. Expert recommendations generally support a beneficial effect of n-3 LCPUFA on cardiovascular health and recommend a daily intake of 500 mg as DHA and EPA, or 1-2 servings of fish per week. The role of n-3 LCPUFA on brain health, in particular neurodegenerative disorders and depression, is reviewed. The evidence for beneficial effects of n-3 LCPUFA on neurodegenerative disorders is non-conclusive despite mechanistic support and observational data. Hence, no definite n-3 LCPUFA expert recommendations are made. Data for the beneficial effect of n-3 LCPUFA on depression are generally compelling. Expert recommendations have been established: 200-300 mg/day for depression; up to 1-2 g/day for major depressive disorder. Recent studies support a beneficial role of n-3 LCPUFAs in reducing the risk for premature birth, with a daily intake of 600-800 mg of DHA during pregnancy. Finally, international experts recently reviewed the scientific evidence on DHA and arachidonic acid (ARA) in infant nutrition and concluded that the totality of data support that infant and follow-on formulas should provide both DHA and ARA at levels similar to those in breast milk. In conclusion, the available scientific data support that dietary recommendations for n-3 LCPUFA should be established for the general population and for subjects with specific physiological conditions.

Potential Health-Promoting Benefits of Paraprobiotics, Inactivated Probiotic Cells

  • Akter, Shahina;Park, Jong-Hyun;Jung, Hoo Kil
    • Journal of Microbiology and Biotechnology
    • /
    • v.30 no.4
    • /
    • pp.477-481
    • /
    • 2020
  • Viability plays an important role in the beneficial microbes (probiotics) to produce health benefits. However, this idea has been changed after the invention of the term "paraprobiotics," indicating that non-viable microbes could produce health benefits similar to those produced by live probiotics. Occasionally, it might be dangerous to administer live probiotics to people with weak immunity. In such cases, ingestion of paraprobiotics could be a potential alternative. The definition of paraprobiotics refers to the use of inactivated (non-viable) microbial cells or cell fractions to provide health benefits to the consumer. Paraprobiotics have attracted much attention because of their long shelf life, safety, and beneficial effects, such as modulation of immunity, modification of biological responses, reduction of cholesterol, anti-inflammatory, and antiproliferative properties. These features indicate that paraprobiotics may play a vital role in improving the health of the consumer by enhancing particular physiological functions, even though the exact underlying mechanisms have not yet been completely elucidated. In this mini-review, we briefly discuss the historical backgrounds of paraprobiotics and evidence of their health-promoting effects, prophylactic, and therapeutic properties.

In vitro investigation of food effects on human gut microbiota (In vitro 상에서 식품이 장내미생물에 미치는 영향)

  • Jeon, Dabin;Singh, Vineet;Unno, Tatsuya
    • Journal of Applied Biological Chemistry
    • /
    • v.64 no.1
    • /
    • pp.75-81
    • /
    • 2021
  • Recent gut microbiota studies have revealed the important roles of gut microbiota for our health. Increasing numbers of health functional foods have been developed every year. Development of functional food often includes ex- and in-vivo experiment to verify the beneficial effects of the functional food. To investigate effects of functional food on gut microbiota, animal models were often conducted. Beneficial effects of food can be evaluated based on how gut microbiota was shifted by food, which results in either increase in beneficial bacteria, decrease in potentially pathogenic bacteria or both. As animal experiments are generally time-consuming and laborious, we investigate how well in-vitro investigation of fecal microbiota may reflect dietary health benefits. Here, we tested 15 kinds of diets using two human subjects' fecal materials. Our results showed varying gut microbiota shifts according to diets, which suggested generally known beneficial diets (i.e. Kimchi, Chunggukjang) increased Lactobacillus and Bifidobacterium. Therefore, we suggest that in vitro fecal microbiota analysis could be used to evaluate beneficial effects of diets. Moreover, this method may be ideal to establish personalized diet.

Value of clay as a supplement to swine diets

  • Mun, Daye;Lee, Jongmoon;Choe, Jeehwan;Kim, Byeonghyeon;Oh, Sangnam;Song, Minho
    • Korean Journal of Agricultural Science
    • /
    • v.44 no.2
    • /
    • pp.181-187
    • /
    • 2017
  • The use of practical management factors to maximize pig health improvement cannot guarantee freedom from diseases. Moreover, because of health safety concerns, the use of antibiotics has been restricted in livestock, including pigs. Therefore, the swine industry has been looking for various alternatives to antibiotics to improve pig's health and performance. Clay is a dietary factor generally accepted for improving pig health. It is a naturally occurring material and is primarily composed of fine-grained minerals. It has a specific structure with polar attraction. Because of this structure, clay has the ability to lose or gain water reversibly. In addition, clay has beneficial physiological activities. First, clay has anti-diarrheic and antibacterial effects by penetrating the cell wall of bacteria or inhibiting their metabolism. Second, it can protect the intestinal tract by absorbing toxins, bacteria, or even viruses. When added to the diet, clay has also been known to bind some mycotoxins, which are toxic secondary metabolites produced by fungi, namely in cereal grains. Those beneficial effects of clay can improve pigs' health and performance by reducing pathogenic bacteria, especially pathogenic Escherichia coli, in the intestinal tract. Therefore, it is suggested that clay has a remarkable potential as an antibiotics alternative.