Browse > Article
http://dx.doi.org/10.1016/j.jgr.2017.03.011

Beneficial effects of Panax ginseng for the treatment and prevention of neurodegenerative diseases: past findings and future directions  

Kim, Ki Hyun (School of Pharmacy, Sungkyunkwan University)
Lee, Dahae (School of Pharmacy, Sungkyunkwan University)
Lee, Hye Lim (College of Korean Medicine, Gachon University)
Kim, Chang-Eop (College of Korean Medicine, Gachon University)
Jung, Kiwon (Institute of Pharmaceutical Sciences, College of Pharmacy, CHA University)
Kang, Ki Sung (College of Korean Medicine, Gachon University)
Publication Information
Journal of Ginseng Research / v.42, no.3, 2018 , pp. 239-247 More about this Journal
Abstract
In recent years, several therapeutic drugs have been rationally designed and synthesized based on the novel knowledge gained from investigating the actions of biologically active chemicals derived from foods, plants, and medicinal herbs. One of the major advantages of these naturalistic chemicals is their ability to interact with multiple targets in the body resulting in a combined beneficial effect. Ginseng is a perennial herb (Araliaceae family), a species within the genus Panax, and a highly valued and popular medicinal plant. Evidence for the medicinal and health benefits of Panax ginseng and its components in preventing neurodegeneration has increased significantly in the past decade. The beneficial effects of P. ginseng on neurodegenerative diseases have been attributed primarily to the antioxidative and immunomodulatory activities of its ginsenoside components. Mechanistic studies on the neuroprotective effects of ginsenosides revealed that they act not only as antioxidants but also as modulators of intracellular neuronal signaling and metabolism, cell survival/death genes, and mitochondrial function. The goal of the present paper is to provide a brief review of recent knowledge and developments concerning the beneficial effects as well as the mechanism of action of P. ginseng and its components in the treatment and prevention of neurodegenerative diseases.
Keywords
antioxidant; ginsenosides; neurodegenerative diseases; Panax ginseng;
Citations & Related Records
Times Cited By KSCI : 18  (Citation Analysis)
연도 인용수 순위
1 Yun TK, Choi SY, Yun HY. Epidemiological study on cancer prevention by ginseng: are all kinds of cancers preventable by ginseng? J Korean Med Sci 2001;16:S19-27.   DOI
2 Joo SS, Won TJ, Lee DI. Reciprocal activity of ginsenosides in the production of proinflammatory repertoire, and their potential roles in neuroprotection in vitro. Planta Med 2005;71:476-81.   DOI
3 Jung CH, Seog HM, Choi IW, Choi HD, Cho HY. Effects of wild ginseng (Panax ginseng CA Meyer) leaves on lipid peroxidation levels and antioxidant enzyme activities in streptozotocin diabetic rats. J Ethnopharmacol 2005;98:245-50.   DOI
4 Fang Y, Shen N, Chen X. Beneficial changes in prostacyclin and thromboxane A2 induced by ginsenosides in myocardial infarction and reperfusion injury in dogs. Zhongguo Yao Li Xue Bao 1986;7:226-30.
5 Sakata T, Etou H, Fujimoto K, Ockuma K, Hayashi T, Arichi S. Central effects of ginsenosides on the feeding behavior and response to stress in rats. In: Korea-Japan Panax ginseng Symposium; 1987. p. 20-8.
6 Fan YY, Cheng HR, Liu D, Zhang X, Wang B, Sun L, Tai GH, Zhou YF. The inhibitory effect of ginseng pectin on L-929 cell migration. Arch Pharm Res 2010;33:681-9.   DOI
7 Francis PT, Palmer AM, Snape M, Wilcock GK. The cholinergic hypothesis of Alzheimer's disease: a review of progress. J Neurol Neurosurg Psychiatry 1999;66:137-47.   DOI
8 Tong LM, Fong H, Huang Y. Stem cell therapy for Alzheimer's disease and related disorders: current status and future perspectives. Exp Mol Med 2015;47:e151.   DOI
9 Serrano-Pozo A, Frosch MP, Masliah E, Hyman BT. Neuropathological alterations in Alzheimer disease. Cold Spring Harb Perspect Med 2011;1:a006189.
10 Musiek ES, Xiong DD, Holtzman DM. Sleep, circadian rhythms, and the pathogenesis of Alzheimer disease. Exp Mol Med 2015;47:e148.   DOI
11 Ciechanover A, Kwon YT. Degradation of misfolded proteins in neurodegenerative diseases: therapeutic targets and strategies. Exp Mol Med 2015;47:e147.   DOI
12 Cho IH. Effects of Panax ginseng in neurodegenerative diseases. J Ginseng Res 2012;36:342.   DOI
13 Fujimoto K, Sakata T, Ishimaru T, Etou H, Ookuma K, Kurokawa M, Machidori H. Attenuation of anorexia induced by heat or surgery during sustained administration of ginsenoside Rg1 into rat third ventricle. Psychopharmacology 1989;99:257-60.   DOI
14 Xie JT, McHendale S, Yuan CS. Ginseng and diabetes. Am J Chin Med 2005;33:397-404.   DOI
15 Yang G, Park D, Lee J, Song BS, Jeon TH, Kang SJ, Jeon JH, Shin S, Jeong HS, Lee HJ. Suppressive effects of red ginseng preparations on SW480 colon cancer xenografts in mice. Food Sci Biotechnol 2011;20:1649-53.   DOI
16 Kang SW, Min HY. Ginseng, the 'immunity boost': the effects of Panax ginseng on immune system. J Ginseng Res 2012;36:354-68.   DOI
17 Hwang JY, Shim JS, Song MY, Yim SV, Lee SE, Park KS. Proteomic analysis reveals that the protective effects of ginsenoside Rb1 are associated with the actin cytoskeleton in ${\beta}$-amyloid-treated neuronal cells. J Ginseng Res 2016;40:278-84.   DOI
18 Bajda M, Guzior N, Ignasik M, Malawska B. Multi-target-directed ligands in Alzheimer's disease treatment. Curr Med Chem 2011;18:4949-75.   DOI
19 Mancuso C, Bates TE, Butterfield DA, Calafato S, Cornelius C, Lorenzo AD, Dinkova Kostova AT, Calabrese V. Natural antioxidants in Alzheimer's disease. Expert Opin Investig Drugs 2007;16:1921-31.   DOI
20 Zhao BS, Liu Y, Gao XY, Zhai HQ, Guo JY, Wang XY. Effects of ginsenoside Rg1 on the expression of toll-like receptor 3, 4 and their signalling transduction factors in the NG108-15 murine neuroglial cell line. Molecules 2014;19:16925-36.   DOI
21 Alam ZI, Daniel SE, Lees AJ, Marsden DC, Jenner P, Halliwell B. A generalised increase in protein carbonyls in the brain in Parkinson's but not incidental Lewy body disease. J Neurochem 1997;69:1326-9.
22 Zhu BT. CNS dopamine oxidation and catechol-O-methyltransferase: importance in the etiology, pharmacotherapy, and dietary prevention of Parkinson's disease. Int J Mol Med 2004;13:343-54.
23 Fahn S, Cohen G. The oxidant stress hypothesis in Parkinson's disease: evidence supporting it. Ann Neurol 1992;32:804-12.   DOI
24 Fahn S, Bressman SB. Should levodopa therapy for parkinsonism be started early or late? Evidence against early treatment. Can J Neurol Sci 1984;11:200-5.   DOI
25 Diamond SG, Marchkham CH, Hoehn MM, McDowell FH, Muenter MD. Multi-center study of Parkinson mortality with early versus later dopa treatment. Ann Neurol 1987;22:8-12.   DOI
26 Parodi J, Ormeno D, Ochoa-de la Paz LD. Amyloid pore-channel hypothesis: effect of ethanol on aggregation state using frog oocytes for an Alzheimer's disease study. BMB Rep 2015;48:13-8.   DOI
27 Ferrante RJ, Shinobu LA, Schulz JB, Matthews RT, Thomas CE, Kowall NW, Gurney ME, Beal MF. Increased 3-nitrotyrosine and oxidative damage in mice with a human copper/zinc superoxide dismutase mutation. Ann Neurol 1997;42:326-34.   DOI
28 Hu S, Han R, Mak S, Han Y. Protection against 1-methyl-4-phenylpyridinium ion (MPPth)-induced apoptosis by water extract of ginseng (Panax ginseng CA Meyer) in SH-SY5Y cells. J Ethnopharmacol 2011;135:34-42.   DOI
29 Zhou T, Zu G, Zhang X, Wang X, Li S, Gong X, Liang Z, Zhao J. Neuroprotective effects of ginsenoside Rg1 through the Wnt/${\beta}$-catenin signaling pathway in both in vivo and in vitro models of Parkinson's disease. Neuropharmacology 2016;101:480-9.   DOI
30 Liu Y, Zhang RY, Zhao J, Dong Z, Feng DY, Wu R, Shi M, Zhao G. Ginsenoside Rd protects SH-SY5Y cells against 1-methyl-4-phenylpyridinium induced injury. Int J Mol Sci 2015;16:14395-408.   DOI
31 Adibhatla RM, Hatcher JF, Dempsey RJ. Phospholipase A2, hydroxyl radicals, and lipid peroxidation in transient cerebral ischemia. Antioxid Redox Signal 2003;5:647-54.   DOI
32 Hall N, Carney J, Cheng M, Butterfield D. Ischemia/reperfusion-induced changes in membrane proteins and lipids of gerbil cortical synaptosomes. Neuroscience 1995;64:81-9.   DOI
33 Won MH, Kang TC, Jeon GS, Lee JC, Kim DY, Choi EM, Lee KH, Do Choi C, Chung MH, Cho SS. Immunohistochemical detection of oxidative DNA damage induced by ischemiaereperfusion insults in gerbil hippocampus in vivo. Brain Res 1999;836:70-8.   DOI
34 Dexter D, Carter C, Wells F, Javoy-Agid F, Agid Y, Lees A, Jenner P, Marsden CD. Basal lipid peroxidation in substantia nigra is increased in Parkinson's disease. J Neurochem 1989;52:381-9.   DOI
35 Hensley K, Maidt ML, Yu Z, Sang H, Markesbery WR, Floyd RA. Electrochemical analysis of protein nitrotyrosine and dityrosine in the Alzheimer brain indicates region-specific accumulation. J Neurosci 1998;18:8126-32.   DOI
36 Park J. Recent studies on the chemical constituents of Korean ginseng (Panax ginseng CA Meyer). Korean J Ginseng Sci 1996;20:389-415.
37 Elyakov G, Strigina L, Uvarova N, Vaskovsky V, Dzizenko A, Kochetkov N. Glycosides from ginseng roots. Tetrahedron Lett 1964;5:3591-7.   DOI
38 Tan X, Gu J, Zhao B, Wang S, Yuan J, Wang C, Chen J, Liu J, Feng L, Jia X. Ginseng improves cognitive deficit via the RAGE/$NF-{\kappa}B$ pathway in advanced glycation end product-induced rats. J Ginseng Res 2015;39:116-24.   DOI
39 Zhang Y, Pi Z, Song F, Liu Z. Ginsenosides attenuate d-galactose-and AlCl 3-inducedspatial memory impairment by restoring the dysfunction of the neurotransmitter systems in the rat model of Alzheimer's disease. J Ethnopharmacol 2016;194:188-95.   DOI
40 Zhao H, Li Q, Li Y. Long-term ginsenoside administration prevents memory loss in aged female C57BL/6J mice by modulating the redox status and upregulating the plasticity-related proteins in hippocampus. Neuroscience 2011;183:189-202.   DOI
41 Butterfield DA, Castegna A, Lauderback CM, Drake J. Evidence that amyloid beta-peptide-induced lipid peroxidation and its sequelae in Alzheimer's disease brain contribute to neuronal death. Neurobiol Aging 2002;23:655-64.   DOI
42 Yang HY, Lee TH. Antioxidant enzymes as redox-based biomarkers: a brief review. BMB Rep 2015;48:200-8.   DOI
43 Ye M, Chung HS, Lee C, Song JH, Shim I, Kim YS, Bae H. Bee venom phospholipase A2 ameliorates motor dysfunction and modulates microglia activation in Parkinson's disease alpha-synuclein transgenic mice. Exp Mol Med 2016;48:e244.   DOI
44 Lee SM. Thermal conversion pathways of ginsenoside in red ginseng processing. Nat Prod Sci 2014;20:119-25.
45 Helms S. Cancer prevention and therapeutics: Panax ginseng. Altern Med Rev 2004;9:259-74.
46 Shin BK, Kwon SW, Park JH. Chemical diversity of ginseng saponins from Panax ginseng. J Ginseng Res 2015;39:287-98.   DOI
47 Shibata S, Fujita M, Itokawa H, Tanaka O, Ishii T. Studies on the constituents of Japanese and Chinese crude drugs. XI. Panaxadiol, a sapogenin of ginseng roots. Chem Pharm Bull 1963;11:759-61.   DOI
48 Lu JM, Yao Q, Chen C. Ginseng compounds: an update on their molecular mechanisms and medical applications. Curr Vasc Pharmacol 2009;7:293-302.   DOI
49 Fuzzati N. Analysis methods of ginsenosides. J Chromatogr B Analyt Technol Biomed Life Sci 2004;812:119-33.   DOI
50 Takahashi M, Yoshikura M. Studies on the components of Panax ginseng CA Meyer. V. On the structure of a new acetylene derivative "panaxynol" (3). Synthesis of 1,9-(cis)-heptadecadiene-4,6-diyn-3-ol. Yakugaku Zasshi 1966;86:1053-6.   DOI
51 Kong YH, Lee YC, Choi SY. Neuroprotective and anti-inflammatory effects of phenolic compounds in Panax ginseng CA Meyer. J Ginseng Res 2009;33:111-4.   DOI
52 Chung IM, Lim JJ, Ahn MS, Jeong HN, An TJ, Kim SH. Comparative phenolic compound profiles and antioxidative activity of the fruit, leaves, and roots of Korean ginseng (Panax ginseng Meyer) according to cultivation years. J Ginseng Res 2016;40:68-75.   DOI
53 Lee H, Yoo B, Byun S. Differences in phenolic acids between Korean ginsengs and mountain ginsengs. Korean J Biotechnol Bioeng 2000;15:323-8.
54 Kim EJ, Jung IH, Van Le TK, Jeong JJ, Kim NJ, Kim DH. Ginsenosides Rg5 and Rh3 protect scopolamine-induced memory deficits in mice. J Ethnopharmacol 2013;146:294-9.   DOI
55 Zhao H, Li Q, Zhang Z, Pei X, Wang J, Li Y. Long-term ginsenoside consumption prevents memory loss in aged SAMP8 mice by decreasing oxidative stress and up-regulating the plasticity-related proteins in hippocampus. Brain Res 2009;1256:111-22.   DOI
56 Hou J, Xue J, Lee M, Yu J, Sung C. Long-term administration of ginsenoside Rh1 enhances learning and memory by promoting cell survival in the mouse hippocampus. Int J Mol Med 2014;33:234-40.   DOI
57 Chu S, Gu J, Feng L, Liu J, Zhang M, Jia X, Liu M, Yao D. Ginsenoside Rg5 improves cognitive dysfunction and beta-amyloid deposition in STZ-induced memory impaired rats via attenuating neuroinflammatory responses. Int Immunopharmacol 2014;19:317-26.   DOI
58 Song XY, Hu JF, Chu SF, Zhang Z, Xu S, Yuan YH, Han N, Liu Y, Niu F, He X. Ginsenoside Rg1 attenuates okadaic acid induced spatial memory impairment by the $GSK3{\beta}/tau$ signaling pathway and the $A{\beta}$ formation prevention in rats. Eur J Pharmacol 2013;710:29-38.   DOI
59 Dong X, Zheng L, Lu S, Yang Y. Neuroprotective effects of pretreatment of ginsenoside Rb1 on severe cerebral ischemia-induced injuries in aged mice: involvement of anti-oxidant signaling. Geriatr Gerontol Int 2017;17:338-45. http://dx.doi.org/10.1111/ggi.12699.   DOI
60 Woodruff TM, Thundyil J, Tang SC, Sobey CG, Taylor SM, Arumugam TV. Pathophysiology, treatment, and animal and cellular models of human ischemic stroke. Mol Neurodegener 2011;6:11.   DOI
61 Zhang X, Shi M, Bjoras M, Wang W, Zhang G, Han J, Liu Z, Zhang Y, Wang B, Chen J, et al. Ginsenoside Rd promotes glutamate clearance by up-regulating glial glutamate transporter GLT-1 via PI3K/AKT and ERK1/2 pathways. Front Pharmacol 2013;4:152.
62 He L, Chen X, Zhou M, Zhang D, Yang J, Yang M, Zhou D. Radix/rhizoma notoginseng extract (sanchitongtshu) for ischemic stroke: a randomized controlled study. Phytomedicine 2011;18:437-42.   DOI
63 Zhang Y, Zhou L, Zhang X, Bai J, Shi M, Zhao G. Ginsenoside-Rd attenuates TRPM7 and ASIC1a but promotes ASIC2a expression in rats after focal cerebral ischemia. Neurol Sci 2012;33:1125-31.   DOI
64 Ye R, Zhang X, Kong X, Han J, Yang Q, Zhang Y, Chen Y, Li P, Liu J, Shi M. Ginsenoside Rd attenuates mitochondrial dysfunction and sequential apoptosis after transient focal ischemia. Neuroscience 2011;178:169-80.   DOI
65 Ye R, Yang Q, Kong X, Han J, Zhang X, Zhang Y, Li P, Liu J, Shi M, Xiong L. Ginsenoside Rd attenuates early oxidative damage and sequential inflammatory response after transient focal ischemia in rats. Neurochem Int 2011;58:391-8.   DOI
66 Rub U, Vonsattel JPG, Heinsen H, Korf HW. The neuropathology of Huntington's disease: classical findings, recent developments and correlation to functional neuroanatomy conclusions and outlook. Adv Anat Embryol Cell Biol 2015;217:1-46.
67 Saudou F, Humbert S. The biology of huntingtin. Neuron 2016;89:910-26.   DOI
68 Kim S, Kim MS, Park K, Kim HJ, Jung SW, Nah SY, Han JS, Chung C. Hippocampus-dependent cognitive enhancement induced by systemic gintonin administration. J Ginseng Res 2016;40:55-61.   DOI
69 Radad K, Moldzio R, Rausch WD. Ginsenosides and their CNS targets. CNS Neurosci Ther 2011;17:761-8.   DOI
70 Nguyen CT, Luong TT, Kim GL, Pyo S, Rhee DK. Korean Red Ginseng inhibits apoptosis in neuroblastoma cells via estrogen receptor ${\beta}$-mediated phosphatidylinositol-3 kinase/Akt signaling. J Ginseng Res 2015;39:69-75.   DOI
71 Wang J, Li S, Fan Y, Chen Y, Liu D, Cheng H, Gao X, Zhou Y. Anti-fatigue activity of the water-soluble polysaccharides isolated from Panax ginseng CA Meyer. J Ethnopharmacol 2010;130:421-3.   DOI
72 Kim DH. Chemical diversity of Panax ginseng, Panax quinquifolium, and Panax notoginseng. J Ginseng Res 2012;36:1-15.   DOI
73 Park JD, Rhee DK, Lee YH. Biological activities and chemistry of saponins from Panax ginseng CA Meyer. Phytochem Rev 2005;4:159-75.   DOI
74 Liu CX, Xiao PG. Recent advances on ginseng research in China. J Ethnopharmacol 1992;36:27-38.   DOI
75 Lee SM, Bae BS, Park HW, Ahn NG, Cho BG, Cho YL, Kwak YS. Characterization of Korean Red Ginseng (Panax ginseng Meyer): history, preparation method, and chemical composition. J Ginseng Res 2015;39:384-91.   DOI
76 Han MS, Han IH, Lee D, An JM, Kim SN, Shin MS, Yamabe N, Hwang GS, Yoo HH, Choi SJ. Beneficial effects of fermented black ginseng and its ginsenoside 20 (S)-Rg3 against cisplatin-induced nephrotoxicity in LLC-PK1 cells. J Ginseng Res 2016;40:135-40.   DOI
77 Park JY, Choi P, Kim HK, Kang KS, Ham J. Increase in apoptotic effect of Panax ginseng by microwave processing in human prostate cancer cells: in vitro and in vivo studies. J Ginseng Res 2016;40:62-7.   DOI
78 Babiker LB, Gadkariem EA, Alashban RM, Aljohar HI. Investigation of stability of Korean ginseng in herbal drug product. Am J Appl Sci 2014;11:160-70.   DOI
79 Richter R, Basar S, Koch A, Konig WA. Three sesquiterpene hydrocarbons from the roots of Panax ginseng CA Meyer (Araliaceae). Phytochemistry 2005;66:2708-13.   DOI
80 Iwabuchi H, Yoshikura M, Kamisako W. Studies on the sesquiterpenoids of Panax ginseng C. A. Meyer. II. Isolation and structure determination of ginsenol, a novel sesquiterpene alcohol. Chem Pharm Bull (Tokyo) 1988;36:2447-51.   DOI
81 Wang JY, Li XG, Yang XW. Ginsenine, a new alkaloid from the berry of Panax ginseng CA Meyer. J Asian Nat Prod Res 2006;8:605-8.   DOI
82 Konno C, Murakami M, Oshima Y, Hikino H. Isolation and hypoglycemic activity of panaxans Q, R, S, T and U, glycans of Panax ginseng roots. J Ethnopharmacol 1985;14:69-74.   DOI
83 Konno C, Sugiyama K, Kano M, Takahashi M, Hikino H. Isolation and hypoglycaemic activity of panaxans A, B, C, D and E, glycans of Panax ginseng roots. Planta Med 1984;50:434-6.   DOI
84 Oshima Y, Konno C, Hikino H. Isolation and hypoglycemic activity of panaxans I, J, K and L, glycans of Panax ginseng roots. J Ethnopharmacol 1985;14:255-9.   DOI
85 Tomoda M, Takeda K, Shimizu N, Gonda R, Ohara N, Takada K, Hirabayashi K. Characterization of two acidic polysaccharides having immunological activities from the root of Panax ginseng. Biol Pharm Bull 1993;16:22-5.   DOI
86 Hornykiewicz O. How L-DOPA was discovered as a drug for Parkinson's disease 40 years ago. Wien Klin Wochenschr 2001;113:855-62.
87 Heo JH, Lee ST, Chu K, Oh MJ, Park HJ, Shim JY, Kim M. Heat-processed ginseng enhances the cognitive function in patients with moderately severe Alzheimer's disease. Nutr Neurosci 2012;15:278-82.   DOI
88 Wang Y, Yang G, Gong J, Lu F, Diao Q, Sun J, Zhang K, Tian J, Liu J. Ginseng for Alzheimer's disease: a systematic review and meta-analysis of randomized controlled trials. Curr Top Med Chem 2016;16:529-36.
89 Hornykiewicz O. Dopamine in the basal ganglia: its role and therapeutic implications (including the clinical use of L-DOPA). Br Med Bull 1973;29:172-8.   DOI
90 Mizuno Y, Mori H, Kondo T. Parkinson's disease: from etiology to treatment. Int Med 1995;34:1045-54.   DOI
91 Sherer T, Betarbet R, Greenamyre J. Pathogenesis of Parkinson's disease. Curr Opin Investig Drugs 2001;2:657-62.
92 Bae JR, Lee BD. Function and dysfunction of leucine-rich repeat kinase 2 (LRRK2): Parkinson's disease and beyond. BMB Rep 2015;48:243-8.   DOI
93 Pollanen MS, Dickson DW, Bergeron C. Pathology and biology of the Lewy body. J Neuropathol Exp Neurol 1993;52:183-91.   DOI
94 Kuzuhara S, Mori H, Izumiyama N, Yoshimura M, Ihara Y. Lewy bodies are ubiquitinated. Acta Neuropathol 1988;75:345-53.   DOI
95 Chung YC, Shin WH, Baek JY, Cho EJ, Baik HH, Kim SR, Won SY, Jin BK. CB2 receptor activation prevents glial-derived neurotoxic mediator production, BBB leakage and peripheral immune cell infiltration and rescues dopamine neurons in the MPTP model of Parkinson's disease. Exp Mol Med 2016;48:e205.   DOI
96 Li N, Liu Y, Li W, Zhou L, Li Q, Wang X, He P. A UPLC/MS-based metabolomics investigation of the protective effect of ginsenosides Rg1 and Rg2 in mice with Alzheimer's disease. J Ginseng Res 2016;40:9-17.   DOI
97 Kang KS, Ham J, Kim YJ, Park JH, Cho EJ, Yamabe N. Heat-processed Panax ginseng and diabetic renal damage. J Ginseng Res 2013;37:379-88.   DOI
98 Gonzalez-Burgos E, Fernandez-Moriano C, Gomez-Serranillos MP. Potential neuroprotective activity of ginseng in Parkinson's disease: a review. J Neuroimmune Pharmacol 2015;10:14-29.   DOI
99 Ong WY, Farooqui T, Koh HL, Farooqui AA, Ling EA. Protective effects of ginseng on neurological disorders. Front Aging Neurosci 2015;7:129.
100 Zhang D, Yasuda T, Yu Y, Zheng P, Kawabata T, Ma Y, Okada S. Ginseng extract scavenges hydroxyl radical and protects unsaturated fatty acids from decomposition caused by iron-mediated lipid peroxidation. Free Radic Biol Med 1996;20:145-50.   DOI
101 Wu J, Jeong HK, Bulin SE, Kwon SW, Park JH, Bezprozvanny I. Ginsenosides protect striatal neurons in a cellular model of Huntington's disease. J Neurosci Res 2009;87:1904-12.   DOI
102 Zhang X, Yu L, Bi HT, Li XH, Ni WH, Han H, Li N, Wang BQ, Zhou YF, Tai GH. Total fractionation and characterization of the water-soluble polysaccharides isolated from Panax ginseng C. A. Meyer. Carbohyd Polym 2009;77:544-52.   DOI
103 Fan YY, Sun CX, Gao XG, Wang F, Li XZ, Kassim RM, Tai GH, Zhou YF. Neuroprotective effects of ginseng pectin through the activation of ERK/MAPK and Akt survival signaling pathways. Mol Med Rep 2012;5:1185-90.
104 Zuccato C, Valenza M, Cattaneo E. Molecular mechanisms and potential therapeutical targets in Huntington's disease. Physiol Rev 2010;90:905-81.   DOI
105 Politis M, Pavese N, Tai YF, Tabrizi SJ, Barker RA, Piccini P. Hypothalamic involvement in Huntington's disease: an in vivo PET study. Brain 2008;131:2860-9.   DOI
106 Bates G, Jones L. Huntington's disease. Oxford: Oxford University Press; 2002. CIT0001.
107 Rosenblatt A. Neuropsychiatry of Huntington's disease. Dialogues Clin Neurosci 2007;9:191-7.
108 Gao Y, Chu SF, Li JP, Zhang Z, Yan JQ, Wen ZL, Xia CY, Mou Z, Wang ZZ, He WB. Protopanaxtriol protects against 3-nitropropionic acid-induced oxidative stress in a rat model of Huntington's disease. Acta Pharmacol Sin 2015;36:311-22.   DOI
109 Amor S, Puentes F, Baker D, Van Der Valk P. Inflammation in neurodegenerative diseases. Immunology 2010;129:154-69.   DOI
110 Kannappan R, Gupta SC, Kim JH, Reuter S, Aggarwal BB. Neuroprotection by spice-derived nutraceuticals: you are what you eat! Mol Neurobiol 2011;44:142-59.   DOI
111 Marchetti B, Abbracchio MP. To be or not to be (inflamed)dis that the question in anti-inflammatory drug therapy of neurodegenerative disorders? Trends Pharmacol Sci 2005;26:517-25.   DOI
112 Andersen JK. Oxidative stress in neurodegeneration: cause or consequence? Nat Med 2004;10:18-25.   DOI
113 Son JH, Shim JH, Kim KH, Ha JY, Han JY. Neuronal autophagy and neurodegenerative diseases. Exp Mol Med 2012;44:89-98.   DOI