• Title/Summary/Keyword: Headwater stream

Search Result 43, Processing Time 0.032 seconds

Spatio-temporal Fluctuations with Influences of Inflowing Tributary Streams on Water Quality in Daecheong Reservoir (대청호의 시공간적 수질 변화 특성 및 호수내 유입지천의 영향)

  • Kim, Gyung-Hyun;Lee, Jae-Hoon;An, Kwang-Guk
    • Korean Journal of Ecology and Environment
    • /
    • v.45 no.2
    • /
    • pp.158-173
    • /
    • 2012
  • The objectives of this study were to analyze the longitudinal gradient and temporal variations of water quality in Daecheong Reservoir in relation to the major inflowing streams from the watershed, during 2001~2010. For the study, we selected 7 main-stream sites of the reservoir along the main axis of the reservoir, from the headwater to the dam and 8 tributary streams. In-reservoir nutrients of TN and TP showed longitudinal declines from the headwater to the dam, which results in a distinct zonation of the riverine ($R_z$, M1~M3), transition ($T_z$, M4~M6), and lacustrine zone ($L_z$, M7) in water quality, as shown in other foreign reservoirs. Chlorophyll-a (CHL) and BOD as an indicator of organic matter, were maximum in the $T_z$. Concentration of total phosphorus (TP) was the highest (8.52 $mg\;L^{-1}$) on March in the $R_z$, and was the highest (165 ${\mu}g\;L^{-1}$) in the $L_z$ on July. Values of TN was the maximum (377 ${\mu}g\;L^{-1}$) on August in the $R_z$, and was the highest (3.76 $mg\;L^{-1}$) in the $L_z$ on August. Ionic dilution was evident during September~October, after the monsoon rain. The mean ratios of TN : TP, as an indicator of limiting factor, were 88, which indicates that nitrogen is a surplus for phytoplankton growth in this system. Nutrient analysis of inflowing streams showed that major nutrient sources were headwater streams of T1~T2 and Ockcheon-Stream of T5, and the most influential inflowing stream to the reservoir was T5, which is located in the mid-reservoir, and is directly influenced by the waste-water treatment plants. The key parameters, influenced by the monsoon rain, were TP and suspended solids (SS). Empirical models of trophic variables indicated that variations of CHL in the $R_z$ ($R^2$=0.044, p=0.264) and $T_z$ ($R^2$=0.126, p=0.054) were not accounted by TN, but were significant (p=0.032) in the $L_z$. The variation of the log-transformed $I_r$-CHL was not accounted ($R^2$=0.258, p=0.110) by $I_w$-TN of inflowing streams, but was determined ($R^2$=0.567, p=0.005) by $I_w$-TP of inflowing streams. In other words, TP inputs from the inflowing streams were the major determinants on the in-reservoir phytoplankton growth. Regression analysis of TN : TP suggested that the ratio was determined by P, rather than N. Overall, our data suggest that TP and suspended solids, during the summer flood period, should be reduced from the eutrophication control and P-input from Ockcheon-Stream should be controlled for water quality improvement.

Characteristics and EMCs of NPS Pollutants Runoff from a Forest-Paddy Composite Watershed (산림논복합 소유역에서의 비점부하 강우유출 특성 및 EMC 산정)

  • Song, In-Hong;Kang, Moon-Seong;Hwang, Soon-Ho;Song, Jung-Hun
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.54 no.4
    • /
    • pp.9-17
    • /
    • 2012
  • This study was aimed to characterize non-point source (NPS) pollutant runoff and estimate event mean concentrations (EMCs) from a small rural watershed located at the headwater area of the Gyeongan stream. The study watershed consists of the two major landuse, forest (72 %) and paddy field (28 %). The nine rainfall events ranging from 18.5 to 192.6 mm in amount were monitored in this study. Stream flow was measured at the watershed outlet using a water level gauge, while a number of water samples for each event were collected and analysed for water quality. Event pollutant loads varied greatly depending on rainfall events varying from 22.6 to 3,134.2 mg/L, 0.32 to 24.56 mg/L, 0.090 to 1.320 mg/L, and 2.3 to 149.8 mg/L for SS, TN, TP, and COD, correspondently. The respective mean EMCs were estimated by 104.2, 1.00, 0.168, and 7.9 mg/L. The Pearson correlation analysis showed that COD EMC was significantly correlated with those of SS, TN, and TP. Rainfall runoff ratio appeared to be negatively correlated with EMCs of SS, TP, and COD, although not statistically significant. The event loads from the largest rainfall was greater than the sum of those from the remaining eight events. The study results suggest that the appropriate management of intensified storm events are of greater importance in curbing NPS loads, while the estimated EMCs provide base data for the unit pollutant loads determination for the forest-paddy composite upstream watershed.

Origin and Storage of Large Woody Debris in a Third-order Mountain Stream Network, Gangwon-do, Korea (강원도 산지계류 내 유목의 기원과 현존량)

  • Kim, Suk Woo;Chun, Kun Woo;Seo, Jung Il;Lim, Young Hyup;Nam, Sooyoun;Jang, Su Jin;Kim, Yong Suk;Lee, Jae Uk
    • Korean Journal of Environment and Ecology
    • /
    • v.34 no.3
    • /
    • pp.249-258
    • /
    • 2020
  • This study aims to provide reference material for effective forest management techniques at the catchment scale, based on the field investigation of large woody debris (LWD) in 11 streams within a third-order forest catchment in Gangwon Province, Korea. To achieve this aim, we analyzed the morphological features of LWD pieces, and the storage and distribution status of LWD by stream order throughout the entire investigation. As a result, a total of 1,207 individual pieces of LWD were categorized into three types as follows: (ⅰ) 1,142 pieces (95%) as only trunk and 65 pieces (5%) as a trunk with root wad, (ⅱ) 1,015 pieces (84%) as non-thinned and 192 pieces (16%) as the thinned, and (ⅲ) 1,050 pieces (87%) as conifer and 157 pieces (13%) as broadleaf. Additionally, in-stream LWD loads (㎥/ha) decreased with increasing stream order, yielding 105.4, 71.3, and 35.6 for first-, second-, and third-order streams, respectively. On the other hand, the ratio of LWD jams to the total LWD volume increased with increasing stream order, yielding 11%, 43%, and 49% for first-, second-, and third-order streams, respectively. Finally, a comparison of the in-stream LWD load with previous studies in several countries around the world indicated that in-stream LWD load was positively correlated with forest stand age even though the climate, topography, forest soil type, forest composition, stand growth rate, disturbance regime, and forest management practices were different. These results could contribute to understanding the significance of LWD as a by-product of forest ecosystems and an indicator of riparian forest disturbance. Based on this, we conclude that advanced forest management techniques, including treatment of thinning slash and stand density control of riparian forest by site location (hillslope and riparian zone, or stream order), should be established in the future, taking the forest ecosystem and the aquatic environment from headwater streams to low land rivers into consideration.

Analysis of Fish Community Structures and Guild Compositions in Walpyung Conservation Park (월평공원 생태 보존지역의 어류군집 구조 및 어류길드 특성 분석)

  • Jo, Hyun-Kyu;Choi, Ji-Woong;An, Kwang-Guk
    • Korean Journal of Ecology and Environment
    • /
    • v.45 no.3
    • /
    • pp.263-270
    • /
    • 2012
  • The objectives of the study were to determine fish fauna and compositions during 2010~2011 in Walpyung Conservation Park along with analysis of fish community structures and trophic and tolerance guilds. Total number of species and individuals sampled were 31 and 2667, respectively and dominant species was Zacco platypus (46.6%) and subdominant species was Acheilognathus lanceolatus (8.7%), which were composed of >50% of the total. Total number of Korean endemic species including Microphysogobio yaluensis was 10 and the proportion of the individuals was 8.7%. Also, natural monument No. 454 of Iksookimia choii, which is endangered species and legal protected species, was sampled and the total number of individuals was only three. According to the analysis of fish community structures, species richness index in the mid-stream reach ($M_r$) was 3.145, which is higher than any other stream reaches ($U_r$ and $D_r$). In contrast, the richness index was 2.180 in the up-stream reach ($U_r$), which is minimum among the sampling sites. Species diversity index was 1.785 and 1.975, respectively in the headwater ($U_r$) and mid-stream reach ($M_r$) and the low values in the down-stream reach ($D_r$, 1.660) were due to the influences of pointsource (i.e., road construction) and non-point sources (sporadic agricultural spots). According to analysis of tolerance guilds, the proportion of tolerant species (TS), based on the number of individuals, was composed of 64.2% and sensitive species (SS) was only 3.3%, indicating a predominance of tolerant fishes in the compositions. The proportion of omnivore species (OS), however, was composed of 64.0% and insectivore species (IS) was 29.3%, indicating a predominance of omnivore fishes in the stream. The high proportions of tolerant and omnivore species in this stream indicates that the water quality and physical habitat environments were degradated in this system. For these reasons, especially natural monument and endemic fish species in this region should be protected from the massive constructions and required to provide efficient stream management strategies.

A Diagnosis of Ecological Health Using a Physical Habitat Assessment and Multimetric Fish Model in Daejeon Stream (물리적 서식지평가기법 및 어류 다변수 평가모델에 의거한 대전천의 생태학적 건강도 진단)

  • Kim, Ja-Hyun;An, Kwang-Guk
    • Korean Journal of Ecology and Environment
    • /
    • v.38 no.3 s.113
    • /
    • pp.361-371
    • /
    • 2005
  • The objective of study was to diagnose integrative ecological health of Daejeon Stream, one of the tributaries of Guem River, during May 2004 ${\sim}$ April 2005. The research approach was primarily based on a Qualitative Habitat Evaluation Index (QHEI) and the Index of Biological Integrity (IBI) using fish assemblage. These outcomes were compared with conventional chemical dataset. For the experiment, four sampling sites were chosen from Daejeon Stream and long-term water quality data during 1995 ${\sim}$ 2004 (obtained from the Ministry of Environment) were analyzed in the spatial and temporal aspects. For the biological health assessment, we developed a stream health assessment model (SHA model) far regional applications. We found that current water quality conditions, based on the COD, BOD, TN and TP, were enhanced by 1.6 ${\sim}$ 5.3 fold over the period of 1995 ${\sim}$ 2004 and that the parameters showed a typical longitudinal decline from the upstream to downstream reach. The differences of water quality between the two reaches were more than 4.4 times, indicating a large spatial variations within the stream. The health conditions, based on the SHA model, averaged 23 and varied from 20 to 26 depending on the sampling stations. Values of the QHEI varied from 39 (Poor condition) to 124 (Cood condition)and values of QHEI in the reach of S2 ${\sim}$ S4 had significantly lower than in the headwater site (S1). Also, biological stream health, based on the criteria of US EPA (1993), was judged as 'Poor condition', in the S4 where TN, TP, BOD and COD were highest. In the meantime, maximum value of SHA (26) was found in the upstream reach (S1) where the water quality and QHEI were best. We also found that compositions of sensitive species showed a linear function with water quality conditions and this pattern was evident in the tolerant species. Thus, the biological stream health, based on the SHA model, matched well water chemistry. Overall outcomes suggest that the biological health impact was a function of chemical degradation and physical habitat quality in the stream.

Flow Analysis of Parshall Flume Using FLOW-3D (FLOW-3D에 의한 파샬플륨 흐름 해석)

  • Oh, Byoung-Dong;Kim, Kyoung-Ho;Lee, Whan-Gi;An, Sang-Do
    • Journal of Korea Water Resources Association
    • /
    • v.37 no.5
    • /
    • pp.375-386
    • /
    • 2004
  • A water shortage is one of the most important factors for development and management of water resources. For reliable water shortage measurement in a stream, Korea Water Resources Corporation(KOWACO) founded five foot Parshall flume at Yong-dam experimental watershed in 2000. The Parshall flume has a specially designed shape to facilitate flow measurements by eliminating sediment deposition problem that could lead to an incorrect measurement. In this study, computational fluid dynamics(CFD) model was used to analyze flow behavior of Parshall Flume under free discharge of five headwater level cases. The flow rates computed by CFD model are compared with those by ISO's formula, USBR's formula and stage-discharge rating curves. Flow rates computed by ISO's and USBR's formula are mostly same, but flow rate by CFD model is larger than empirical value by 9% and flow rate by stage-discharge rating curves is less than empirical value by 16%.

Soil Physical and Hydrological Properties Affected by Forest Harvesting within Riparian Areas of Forested Headwaters (산지계류 수변지역에서 산림벌채 후 토양의 물리적.수문학적 특성 변화)

  • Choi, Byoungkoo
    • Journal of Korean Society of Forest Science
    • /
    • v.101 no.3
    • /
    • pp.538-545
    • /
    • 2012
  • This study addressed soil disturbances following harvesting as well as soil physical and hydrological properties within three first-order headwater catchments characterized by ephemeral-intermittent streams. Four treatments representing a range of potential Best Management Practices(BMPs) for ephemeral-intermittent streams were used; BMP1, BMP2, clearcut and reference. This study includes 1 year of pre- and post-harvest observations. Results showed that post-harvest disturbances were closely related with harvesting intensity and generally tended to reflect changes in soil physical and hydrological properties following harvest with the except of bulk density and porosity. Forest clearcutting decreased macroporosity and saturated hydraulic conductivity, and increased soil resistence as a result of severe soil disturbances thereby increasing soil erosion. These impacts were reduced by implementing two BMP treatments during harvesting activities. The finding support the use of either BMP treatments for ephemeral-intermittent streams, however, the additional measure of leaving logging debris in BMP2 did not cover enough soil surface to reduce erosion.

Community Patterning of Benthic Macroinvertebrates in Urbanized Streams by Utilizing an Artificial Neural Network (인공신경망을 이용한 도시하천의 저서성 대형무척추동물 군집 유형성 연구)

  • Kim, Jwa-Kwan;Chon, Tae-Soo;Kwak, Inn-Sil
    • Korean Journal of Ecology and Environment
    • /
    • v.36 no.1 s.102
    • /
    • pp.29-37
    • /
    • 2003
  • Benthic macro-invertebrates were seasonally collected in the Onchen Stream in Pusan, from July 2001 to March 2002. Generally 4 phylum 5 class 10 order 19 family 23 species were observed in the study sites. Ephemeroptera, Plecoptera and various species appeared in headwater stream while Oligochaeta and Chironomidae were dominated in downstream sites. Community abundance patterns, especially the dominant taxa, Oligochaeta and Chironomidae, appeared to be different depending upon the sampling months. Oligochaeta was usually observed in July, December and March while Chironomidae was appeared in September. The biological indices, TBI(Trent Biotic Index), BS (Biotic Score), BMWP (Biological Monitoring Working Party)were calculated with the appeared communities of the sampling sites through the survey months. TBI showed 1 to 8, BMWP was 1 to 93 and CBI appeared 9 to 387 in the different sites. The biological indices decreased from headstream to downstream sites, We implemented the unsupervised Kohonen network for patterning of community abundance of the sampling sites. The patterning map by the Kohonen network was well represented community abundance of the sampling sites. Also, we conducted RTRN (Real Time Recurrent Neural Network) for predicting of the biological indices in the different sites. The results appeared that the predicting values by RTRN were well matched field data (correlation coefficient of TBI, BMWP and CBI were 0.957, 0.979 and 0.967, respectively).

Influences of Vegetation Invasion on Channel Changes in the Deposition Area of Torrential Stream (계상퇴적지내의 식생침입이 유로변동에 미치는 영향)

  • Ma, Ho-Seop;Lee, Heon-Ho
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.3 no.3
    • /
    • pp.12-19
    • /
    • 2000
  • The purpose of this study is to evaluate the channel changes according to the temporal and spatial distribution of the deposition area by the vegetation invasion in Kyesung-river. The deposition area mainly occurred by landslide and debris flow from the headwater channel. And also the movement of subsequent downstream depends upon the site of deposits by a varity erosional processes. As the age of deposition area is older, it had a tendency to stable by plant invasion relatively. The vegetations grown in deposition area were very effective to estimate a historical deformation process of river-bed occurred by landslide. The vegetations around deposition area consisted of the same as tree species grown in forest area of circumference like Pinus densiflora, Styrax japonica, Quercus acutissima and Salix gracilistyla. If the torrential stream is flooding, the deposition area of 1 to 5 years can be change to the channel easily. Deposition area of 11 to 23 years had a high river-bed because it passed long time since deposited, and amount of sedimention is much more in wide than in narrow channel. It is consider that the change of channel had many influenced by the span of survial time, scale and movement frequency of deposition area after the vegetation invasion.

  • PDF

Analysis of Stream Ecosystem Health in Headwater Areas Using Landcover Data (소하천 수변 토지피복에 따른 하천 건강성 분석)

  • Han, Dae-Ho;Kim, Ik-Jae
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2009.05a
    • /
    • pp.496-500
    • /
    • 2009
  • 소하천은 하천 네트워크의 최상류에 넓게 소재하는 하천이다. 본 연구의 목적은 올바른 소하천 수생태계 관리방안을 도출하기 위하여 소하천의 건강성을 분석하고 현행 소하천 관리제도의 개선점을 모색하는 것이었다. 본 연구에서는 다음과 같은 분석방법을 이용하였다. 첫째, 2007년 한강수계 소하천 28개 지점에서의 부착조류($DAI_{PO}$, TDI), 저서성 대형무척추동물(KSI), 어류(IBI), 서식환경, 수변환경 등 6개 항목에 대한 수생태 건강성 조사결과를 토대로 공간적 분포와 수질현황을 조사하여 소하천에 대한 종합적인 건강성 평가를 실시하였다. 둘째, 분석대상지역을 각각 소하천 구간스케일(28개 지점)과 유역스케일(팔당호, 안성천 유역)로 선정, 하천차수도(1:25,000)를 활용하여 해당 구간과 유역의 소하천도를 작성하였다. 셋째, 작성된 소하천도 는ArcGIS(ver. 9.3)에서 30, 60, 90, 120, 150-m Buffering을 하였다. 다음으로 소하천 구간은 중분류(23개 항목, $2000{\sim}2006$ 또는 2007년) 토지피복도를, 팔당호 및 안성천 유역의 소하천은 대분류(8개 항목, $1975{\sim}2000$년) 토지피복도를 적용하여 분류항목별 면적변화비율을 산정하였다. 끝으로 소하천 정비에 대한 제도적 문제점을 분석하여 소하천 관리의 개선점을 연구하였다. 그 연구 결과, 첫째 연구대상 소하천(28개)의 건강성은 도심 소하천에서 가장 낮게 조사되었고, 일부 소하천은 비록 상류에 위치함에도 불구하고 부착조류의 유기물, 영양염류 평가가 낮게 평가되었다. 둘째, 소하천 구간 스케일의 수변토지피복변화 분석결과 소하천 수생태 건강성은 거시적으로 산림, 도시화, 밭 등의 피복변화에 민감한 것으로 나타났으며 도시화 피복변화의 영향은 수변 30m에서 60m보다 3배 정도 큰 것으로 나타났다. 유역 스케일 분석에서는 상대적으로 도시화가 많이 진행된 안성천 유역의 소하천이 팔당호 유역보다 낮은 건강성일 것으로 예측되었다. 결론적으로 적절한 소하천 수변관리는 지역 하천의 건강성을 온전히 회복시키고 개선 유지하기 위한 중요한 수단들 중에 하나이며 수변토지피복의 변화율은 (소)하천 건강성 또는 유역관리의 지표로 활용될 수가 있는 것으로 조사되었다. 이와 더불어 본 연구를 통해 소하천 복원 및 관리는 소하천 특성을 고려한 장기적인 계획과 관리대상의 우선순위를 바탕으로 점진적인 대안마련이 필요할 것으로 사료된다.

  • PDF