• Title/Summary/Keyword: Heading control

Search Result 439, Processing Time 0.035 seconds

Effect of Microbial Flora and Inoculation of Probiotics on Fermenting Characteristics of Naked Barley Grain (Hordeum Vulgare L.) (쌀보리 종실 내 미생물 분포와 생균제 접종이 발효특성에 미치는 영향)

  • Ahn, Hye-Jin;Kim, Ki Hyun;Jo, Eun Seok;Kim, Jo Eun;Kim, Kwang-Sik;Kim, Young Hwa;Song, Tae Hwa;Park, Jong Ho;Kang, Hwan Ku;Jang, Sun Sik;Oh, Young Kyoon;Cheon, Dong Won;Seol, Kuk-Hwan
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.35 no.4
    • /
    • pp.321-326
    • /
    • 2015
  • This study was performed to analyze the resident microbial flora and the effects of probiotic inoculation on the fermentation characteristics of whole grain naked barley (Hordeum Vulgare L.) with the goal of evaluating the possibility of utilization as fermented feedstuff. Naked barley grains were harvested 35 days after heading, and the microbial flora was analyzed using MALDI-TOF mass spectrometer. After inoculation of commercial microbes to the naked barley grain (BT), the pH and number of bacteria, such as aerobic bacteria, lactic acid bacteria, yeast and E. coli, were measured and compared with the non-inoculated control (BC). A total of 122 colonies was isolated from the naked barley grain and the most popular bacteria species was Staphylococcus xylosus (n = 30, 24.59%). The pH value decreased more rapidly in BT than in BC, and was significantly lower after 7 days of fermentation at $4.33{\pm}0.02$ and $4.83{\pm}0.01$, respectively. The number of aerobic bacteria, lactic acid bacteria and yeast showed an increasing trend within the first 7 days of fermentation, however, their numbers decreased at 28 and 42 days of fermentation. The population of lactic acid bacteria in BT was higher than in BC, but there was no significant different at 7 days of fermentation, with respective levels of $9.24{\pm}0.20$ and $9.01{\pm}0.10logCFU/g$ (p>0.05). The initial number of E. coli was very high in the naked barley grain but subsequently decreased significantly. After 7 days of fermentation, E. coli was not detected in either BT or BC samples. From these results, it appears that the fermentation of naked barley grain proceeded adequately after 7 days, and that fermentation contributes to the safety of naked barley grain during storage.

Optimal relative humidity for Pleurotus eryngii cultivation (큰느타리(새송이)버섯 최적 생육습도 조건)

  • Kim, Sun Young;Kim, Min-Keun;Im, Chak Han;Kim, Kyung-Hee;Kim, Dong Sung;Kim, Tae-Sung;Park, Ki Kwan;Lee, Sang Dae;Ryu, Jae-San
    • Journal of Mushroom
    • /
    • v.11 no.3
    • /
    • pp.131-136
    • /
    • 2013
  • The effects of fixed and variable relative humidity on fruiting body formation and characters of Pleurotus eryngii were investigated with normal and thinning treatment plots. In fixed relative humidity, as humidity was lower, period of harvest was longer as well as days for pinheading in the both of normal and thinning plots. In the normal plot, qualities of mushroom were 5.5, 5.8, and 6.3 and yield was 98.6 g per bottle for 90% relative humidity, it was best. In the thinning plot, qualities of mushroom were 7.7, 8.4, and 8.5 and yields were 102.1, 105.8, and 116.9 g at 70, 80, and 90% respectively. In variable relative humidity with a thinning plot, the yield of P. eryngii on condition I(>90% for 1 day ${\rightarrow}$ 85% until thinning(for about 11 days) ${\rightarrow}$ 80%) and III(>90% until pin-heading(about for a week) ${\rightarrow}$ 85% until thinning(about for 5 days) ${\rightarrow}$ 80%) were 85.5 and 87.8 g per bottle, and qualities were 7.8 and 8.0 respectively. For long shelf life and a cultural control of bacterial soft rot disease, the condition I will be more largely adopted by mushroom farmers.

Proper Growing Regions and Management Practices for Improving Production Stability in Direct-seeded Rice Cultivation (벼 무논직파 재배 안정성 확보를 위한 조건 및 재배적지 설정)

  • Hwang, Woon-Ha;Jeong, Jae-Hyeok;Lee, Hyen-Seok;Yang, Seo-Yeong;Lee, Chung-Keun;Lim, Yeon-Hwa;Cho, Seung-Hyun;Min, Hyun-Kyung;Kim, Sang-Kuk;Nam, Jin-Woo;Choi, Yeo-Seul;Jo, Youn-Sang;Choi, Kyung-Jin
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.64 no.4
    • /
    • pp.336-343
    • /
    • 2019
  • Wet direct-seeding (WDS) is an important method for improving the competitiveness of rice production in South Korea. We analyzed the optimum direct-seeding date to establish the rice standing rate in each area and selected suitable areas for WHS by considering the heading stage limit date for improving cultivation safety. As a result, the rice direct-seeding date to control weedy rice was around 5.15, 5.17-5.19, and after 5.20 in southern Youngnam, southern Honam, and the Middle Coast areas, respectively. However, the optimum seeding date for good standing rice was in late March in most areas. Analyzing by area, most of the southern plains and parts of the central inland plain are suitable for WHS. However, most parts of Gwangwon-do, and the northern parts of Chungbuk, Gyeongbuk, and Yeonghonam areas are not suitable for WHS, and should therefore avoid WHS.

The change of grain quality and starch assimilation of rice under future climate conditions according to RCP 8.5 scenario (RCP 8.5 시나리오에 따른 미래 기후조건에서 벼의 품질 및 전분 동화 특성 변화)

  • Sang, Wan-Gyu;Cho, Hyeoun-Suk;Kim, Jun-Hwan;Shin, Pyong;Baek, Jae-Kyeong;Lee, Yun-Ho;Cho, Jeong-Il;Seo, Myung-Chul
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.20 no.4
    • /
    • pp.296-304
    • /
    • 2018
  • The objective of this study was to analyze the impact of climate change on rice yield and quality. Experiments were conducted using SPAR(Soil-Plant-Atmosphere-Research) chambers, which was designed to create virtual future climate conditions, in the National Institute of Crop Science, Jeonju, Korea, in 2016. In the future climate conditions($+2.8^{\circ}C$ temp, 580 ppm $CO_2$) of year 2051~2060 according to RCP 8.5 scenario, elevated temperature and $CO_2$ accelerated the heading date by about five days than the present climate conditions, resulted in a high temperature environment during grain filling stage. Rice yield decreased sharply in the future climate conditions due to the high temperature induced poor ripening. And the spikelet numbers, ripening ratio, and 1000-grain weight of brown rice were significantly decreased compared to control. The rice grain quality was also decreased sharply, especially due to the increased immature grains. In the future climate conditions, expression of starch biosynthesis-related genes such as granule-bound starch synthase(GBSSI, GBSSII, SSIIa, SSIIb, SSIIIa), starch branching enzyme(BEIIb) and ADP-glucose pyrophosphorylase(AGPS1, AGPS2, AGPL2) were repressed in developing seeds, whereas starch degradation related genes such as ${\alpha}-amylase$(Amy1C, Amy3D, Amy3E) were induced. These results suggest that the reduction in yield and quality of rice in the future climate conditions is likely caused mainly by the poor grain filling by high temperature. Therefore, it is suggested to develop tolerant cultivars to high temperature during grain filling period and a new cropping system in order to ensure a high quality of rice in the future climate conditions.

Growth and Quality Characteristics of Korean Bread Wheat in Response to Elevated Temperature during their Growing Season (밀 재배기간 온도상승이 빵용 밀의 생육 및 품질 특성에 미치는 영향)

  • Chuloh Cho;Han-yong Jeong;Yurim Kim;Jinhee Park;Kyeong-Hoon Kim;Kyeong-Min Kim;Chon-Sik Kang;Jong-Min Ko;Jiyoung Shon
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.67 no.4
    • /
    • pp.234-241
    • /
    • 2022
  • Wheat (Triticum aestivum L.) is a major staple foods and is in increasing demand in the world. The elevated temperature caused by changes in climate and environmental conditions is a major factor affecting wheat development and grain quality. The optimal temperature range for winter wheat is between 15 and 25℃, and it is necessary to study the physiological characteristic of wheat according to elevated temperatures. This study presents the effect of elevated temperature on the yield and quality of two Korean bread wheat (Baekkang and Jokyoung) in temperature gradient tunnels (TGT). Two bread wheat cultivars were grown in TGT at four different temperature conditions: T0 (control, near ambient temperature), T1 (T0+1℃), T2 (T0+2℃), (T0+2℃), T3 (T0+3℃). The period from sowing to heading stage accelerated and the number of grains per spike and grain yield reduced under T3 condition compared with those under T0 condition. Grain filling rate and grain maturity also accelerated with elevated temperature (T3). The increase in temperature led to the increase in protein contents, whereas decreased the total starch contents. These results are consistent with the decreased expression of starch synthesis genes and increased gliadin synthesis or gluten metabolism genes during the late grain filling stage. Taken together, our results suggest that the increase in temperature (T3) led to the decrease in grain yield by regulating the number of grains/spike, whereas increased the protein content by regulating the expression of starch and gliadin-related genes or gluten metabolism process genes expression. In addition, our results provide a useful physiological information on the response of wheat to heat stress.

A Study on the Spatial Structure of Eupchi(邑治) and Landscape Architecture of Provincial Government Office(地方官衙) in the Late Joseon Dynasty through 'Sukchunjeahdo(宿踐諸衙圖)' - Focused on the Youngyuhyun Pyeongan Province and Sincheongun Hwanghae Province - (『숙천제아도(宿踐諸衙圖)』를 통해 본 조선시대 읍치(邑治)의 공간구조와 관아(官衙) 조경 - 평안도 영유현과 황해도 신천군을 중심으로 -)

  • Shin, Sang sup;Lee, Seung yoen
    • Korean Journal of Heritage: History & Science
    • /
    • v.49 no.2
    • /
    • pp.86-103
    • /
    • 2016
  • 'Sukchunjeahdo' illustration-book, which was left by Han, Pil-gyo(韓弼敎 : 1807~1878)in the late Joseon Dynasty, includes pictorial record paintings containing government offices, Eupchi, and Feng Shui condition drawn by Gyehwa(界畵) method Sabangjeondomyobeop(四方顚倒描法) and is the rare historical material that help to understand spatial structure and landscape characteristics. Youngyuhyun(永柔縣) and Sincheongun(信川郡) town, the case sites of this study, show Feng Shui foundation structure and placement rules of government offices in the Joseon Period are applied such as 3Dan 1Myo(三壇一廟 : Sajikdan, Yeodan, Seonghwangdan, Hyanggyo), 3Mun 3Jo(三門三朝 : Oeah, Dongheon, Naeah) and Jeonjohuchim(前朝後寢) etc. by setting the upper and lower hierarchy of the north south central axis. The circulation system is the pattern that roads are segmented around the marketplace of the entrance of the town and the structure is that heading to the north along the internal way leads to the government office and going out to the main street leads to the major city. Baesanimsu(背山臨水 : Mountain in backward and water in front) foundation, back hill pine forest, intentionally created low mountains and town forest etc. showed landscape aesthetics well suited for the environmental comfort condition such as microclimate control, natural disaster prevention, psychological stability reflecting color constancy principle etc. and tower pavilions were built throughout the scenic spot, reflecting life philosophy and thoughts of contemporaries such as physical and mental discipline, satisfied at the reality of poverty, returning to nature etc. For government office landscape, shielding and buffer planting, landscape planting etc. were considered around Gaeksa(客舍), Dongheon(東軒), Naeah(內衙) backyard and deciduous tree s and flowering trees were cultivated as main species and in case of Gaeksa, tiled pavilions and pavilions topped with poke weed in tetragonal pond were introduced to Dongheon and Naeah and separate pavilions were built for the purpose of physical and mental discipline and military training such as archery. Back hill pine tree forest formed back landscape and zelkova, pear trees, willow trees, old pine trees, lotus, flowering trees etc. were cultivated as gardening trees and Feng-Shui forest with willow trees as its main species was created for landscape and practical purposes. On the other hand, various cultural landscape elements etc. were introduced such as pavilions, pond serving as fire protection water(square and circle), stone pagoda and stone Buddha, fountains and wells, monument houses, flagpoles etc. In case of Sincheongun town forest(邑藪), Manhagwan(挽河觀), Moonmujeong(文武井), Sangjangdae(上場岱) and Hajangdae(下場岱) Market place, Josanshup<(造山藪 : Dongseojanglim(東西長林)>, Namcheon(南川) etc. were combined and community cultural park with the nature of modern urban park was operated. In this context, government office landscape shows the garden management aspect where square pond and pavilions, flowering trees are harmonized around side pavilion and backyard. Also, environmental design technique not biased to aesthetics and ideological moral philosophy and comprehensively considering functionality (shielding and fire prevention, microclimate control, etc.) and environmental soundness etc. is working.

Meteorological Constraints and Countermeasures in Rice Breeding -Breeding for cold tolerance- (기상재해와 수도육종상의 대책 - 내냉성품종육성방안-)

  • Mun-Hue Heu;Young-Soo Han
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.27 no.4
    • /
    • pp.371-384
    • /
    • 1982
  • Highly cold tolerant varieties are requested not only at high latitute cool area but also tropical high elevated areas, and the required tolerance is different from location to location. IRRI identified 6 different types of cold tolerance required in the world for breeding purpose; a) Hokkaido type, b) Suweon type, c) Taipei 1st season type, d) Taipei 2nd season type, e) Tropical alpine type and, f) Bangladesh type. The cold tolerance requested in Korea is more eargent in Tongil group cultivars and their required tolerance is the one such as the physiological activities at low temperature are as active as in Japonica group cultivars at least during young seedling stage and reproduction stage. With conventional Japonica cultivars, such cold tolerant characters are requested as short growth duration but stable basic vegetative growth, less sensitive to high temperature and less prolonged growth duration at low temperature. The methods screening for cold tolerance were developed rapidly after the Tongil cultivar was reliesed. The facilities of screening for cold tolerance, such as, low temperature incubator, cold water tank, growth cabinet, phytotron, cold water nursery in Chuncheon, breeding nursery located in Jinbu, Unbong and Youngduk, are well established. Foreign facilities such as, cold water tank with the rapid generation advancement facilities, cold nurseries located in Banaue, Kathmandu and Kashimir may be available for the screening of some limitted breeding materials. For the reference, screening methods applied at different growth stages in Japan are introduced. The component characters of cold tolerance are not well identified, but the varietal differences in a) germinability, b) young seedling growth, c) rooting, d) tillering, e) discolation, f) nutrition uptake, g) photosynthesis rate, h) delay in heading, i) pollen sterility, and j) grain fertility at low temperature are reported to be distinguishable. Relationships among those traits are not consistent. Reported studies on the inheritance of cold tolerance are summarized. Four or more genes are controlling low temperature germinability, one or several genes are controlling seedling tolerance, and four or more genes are responsible for the pollen fertility of the rice treated with cold air or grown in the cold water nursery. But most of those data indicate that the results may come out in different way if those were tested at different temperature. Many cold tolerant parents among Japonicas, Indicas and Javanicas were identified as the results of the improvement of cold tolerance screening techniques and IRTP efforts and they are ready to be utilized. Considering a) diversification of germ plasm, b) integration of resistances to diseases and insects, c) identification of adaptability of recommending cultivars and, d) systematic control of recommending cultivars, breeding strategies for short term and long term are suggested. For short term, efforts will be concentrated mainly to the conventional cultivar group. Domestic cultivars will be used as foundation stock and ecologically different foreign introductions such as from Hokkaido, China or from Taiwan, will be used as cross parents for the adjustment of growth durations and synthsize the prototype of tolerances. While at the other side, extreme early waxy Japonicas will be crossed with the Indica parents which are identified for their resistances to the diseases and insects. Through the back corsses to waxy Japonicas, those Indica resistances will be transfered to the Japonicas and these will be utilized to the crosses for the improvement of resistances of prototype. For the long term, efforts will be payed to synthsize all the available tolerances identified any from Japonicas, Indicas and Javanicas to diversify the germ plasm. The tolerant cultivars newly synthsized, should be stable and affected minimum. to the low temperature at all the growing stages. The resistances to the diseases and insects should be integrated also. The rapid generation advancement, pollen culture and international cooperations were emphasized to maximize the breeding efficiency.

  • PDF

The Effects of Different Particle Sizes of Fused Phosphate on Paddy Rice (수도(水滔)에 대한 용성인비(熔成燐肥)의 입도별(粒度別) 비효에 관한 연구(硏究))

  • Uhm, Dae-Ick;So, Jae-Don;Chang, Young-Sun
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.10 no.4
    • /
    • pp.245-256
    • /
    • 1978
  • The effects of different particle size distribution of fused phosphate on the changes of phosphorus content in soil and plant, growth and yield of paddy rice were investigated through pot and field experiments. The following results were obtained. 1. Negative correlation was found between unhulled rice yield and the composition of fused phosphate whose particle size was larger than 28 mesh, and 65 to 150 mesh, and highly significant correlation was found between unhulled rice yield and the composition of fused phosphate whose particle size was 28 to 48 mesh. But no significant correlation was found betweeen unhulled rice yield and the composition of fused phosphate whose particle size was 48 to 65 mesh. Thus the composition of 56% of 28 to 48 mesh particles and 44% of 48 to 65 mesh particles would give the best effect. 2. In the soil of the Jeonbug series rice plant in the plots treated with fine single textured fused phosphate showed poor early growth, i.e. poor tillering and short plant height. But at harvesting stage it showed rather increased number of tillers and higher plant height. Of the composite fused phosphate the more particles of 28 to 48 mesh it had, the better growth it showed. In the soil of the Yesan series rice plant in the treated plots showed much better tillering and higher plant height in contrast with that in the control plots. Of the single textured fused phosphate the finer particles showed better growth, while of the composite fused phosphate the more particles finer than 48 mesh it had, the poorer the tillering. 3. The content of available phosphorus in the soil tended to increase as the particles of both single textured and composite phosphate became finer. The soil phosphorus content decreased as the content of phosphorus absorbed by rice plant increased at each stage of growth, and the amount of soil phophorus decreased became larger as the the particles were finer. The amount of available phosphorus in the treated soils was larger in the soil of the Yesan series than in the soil of the Jeonbug series which was a long cultivated soil and contained relatively high phosphorus. 4. In the single textured fused phosphate the amount of phosphorus absorbed by rice plant tended to increase as the particles were finer, and great difference was found at heading stage, but at harvesting stage little difference was found for all the plots. In the field experiment in the soil of the Jeonbug series more phosphorus was absorbed by rice plant in the plots treated with the composite fused phosphate of higher content of 28 to 48 mesh particles. In the pot experiment the amount of phosphorus absorbed by rice plant was highest in the plots treated with the composite fused phosphate of 53.35% of particles larger than 48 mesh and 46.6% of particles smaller than 48 mesh. In the pot experiment in the Yesan series the amount of absorbed phophorus was highest in the plots treated with the fused phosphate of 47.75% of particles larger than 48 mesh and 50. 216% of particles smaller than 48 mesh. 5. A reverse relationship was found between the absorbed phosphorus and silica. In the pot experiment in the soils of both the Jeonbug and Yesan series the amount of phosphorus absorbed by rice plant increased as the particles were finer, while the amount of absorbed silica tended to decrease.

  • PDF

Studies on the Foliar Application of Urea as Nitrogen Source of Rice Plant Nutrition (요소엽면살포(尿素葉面撒布)에 따른 수도(水稻)의 질소영양(窒素營養)에 관(關)한 연구(硏究))

  • Cho, Seoung-Jin
    • Applied Biological Chemistry
    • /
    • v.9
    • /
    • pp.125-147
    • /
    • 1968
  • This experiment was carried out as a part of the studies on reasonable application of nitrogen in rice plant to determine: (I) Nitrogen absorption. and rooting of rice seedlings as affected by urea foliar application at late seedling stage (II) Effect of leaf prunning and foliar application of urea at late heading stage on the maturation and yield of rice (III) Effect of foliar application of urea and its time during the stage of ear formation on yield of rice plant. Results obtained are summarized as follows. Exp.I: Nitrogen absorption and rooting of rice seedlings as affected be urea foliar application at late seedling stage. 1 : The foliar application of urea plots$(T_{1},T_2)$ snowed mare N-content than non-urea foliar application plot(T0) at lane seedling stage, being significant among treatments and foliar application of urea seemed more effective in increasing the N-content of seedlings. and promoted root settlement and early growth alter the transplanting. 2 : The carbon contents of the plants of $T_1$, and $T_2$ at late seedling stage increased than T0, and the carbon contents. of $T_1$ and $T_2$ plots became higher in amount in proportion to the nitrogen absorption as compared with those of $T_0$. 3 : C/N ratio appeared significant among soil application plots($N_1, \;N_2$) and foliar application of urea plots ($T_1$, $T_2$ and $T_0$). C/N ratio was lower in case of increased amount of nitrogen. The higher contents of nitrogen and carbon and lower C/N ratio resulted in the increment of root numbers and root lengths. Exp.II: Effect of leaf prunning and foliar application of urea at late heading stage on the maturation and yield of rice. 1 : There was a highly significant decrease in the maturing rate by severe leaf prunning. In the mean time, significant increase in maturing rate was observed with urea foliar application and it was found the more frequent application the more effective for higher maturing rate with a moderate significance. A correlationship between the level of prunning and maturing rate was enumerated to 0.961 of correlation coefficient, which indicated an increased maturing rate by the increased number of remaining leaves. 2 : The 1.000 grain weight, grain weight and hulled rice yield increased by leaf prunning in order (plot a$A_1$, $A_3$, $A_2$ and $A_0$ were 89.8%, 89.4%, 87.8% and 87.5% respectively, showing the highest of rate in $A_1$ and $A_3$ in methods of ear fertilization and being highly significant between its treatment. 3 : 1000 grain weights were highly significant between time of application, showing a tendency of increase of weights with the time lagging until days before earings as that of maturing rates. High significance was recognized between methods of ear fertilization, showing the highest in $A_2$ 23.18 gr. 4 : Yields per $3.3m^2$ were not significant between time of ear fertilization, whereas were highly significant between methods of ear fertilization. Those of $A_1$, $A_3$, $A_2$ and $A_0$ were 1.486 kg, 1.491 kg, 1.381 kg and 1.328 kg, respectively, showing the highest in $A_1$ and $A_3$. 5 : Hulling ratios showed significant different between time of ear fertilization, showing the highest in $T_2$, whereas those of methods of ear fertilization were highly significant between its treatment, Those of $A_1$, $A_3$, $A_2$ and $A_0$ were 84.72%, 84.06%, 83.29%, and 82.56% respectively, showing the highest m $A_2$ and $A_3$ among others. 6 : Yields of hulled rice per $3.3m^2$ showed significant different between time of ear fertilization, showing the highest in $T_1$ 1.192 kg. Whereas, those were highly significant between methods of ear fertilization. Those of $A_1$, $A_3$, $A_2$ and $A_0$ were 1.259 kg, 1.254 kg, 1.149 kg and 1.095 kg, respectively, showing the highest in $A_1$ and $A_2$. 7 : Contents of nitrogen on rice plant increased in case of nitrogen application as ear fertilizer and showed that the case of urea foliar application was more effective than that of soil application, showing the increased nitrogen content of rice plant was accompanied by carbon content.

  • PDF