• Title/Summary/Keyword: Heading Error

Search Result 147, Processing Time 0.029 seconds

Design of GPS-aided Dead Reckoning Algorithm of AUV using Extended Kalman Filter (확장칼만필터를 이용한 무인잠수정의 GPS 보조 추측항법 알고리즘 설계)

  • Kang, Hyeon-Seok;Hong, Sung-Min;Sur, Joo-No;Kim, Joon-Young
    • Journal of Ocean Engineering and Technology
    • /
    • v.31 no.1
    • /
    • pp.28-35
    • /
    • 2017
  • This paper introduces a GPS-aided dead reckoning algorithm that asymptotically estimates the heading bias error of a magnetic compass based on geodetic north, improves the position error accumulated by dead reckoning, and helps the estimated position of an AUV to represent a position in the NED coordinate system, by receiving GPS position information when surfaced. Based on the results of a simulation, the locational error was bounded with a modest distance, after estimating the AUV position and heading bias error of the magnetic compass when surfaced. In other words, it was verified that proposed algorithm improves the position error in the NED coordinate system.

A Study on the Ship's Heading Stabilization of GPS Compass Using Electromagnetic Compass (전자자기 컴퍼스를 이용한 GPS 컴퍼스의 선수방위 안정화에 관한 연구)

  • Jo, Hyeon-Jeong;Shin, Hyeong-Il;Lee, Dae-Jae;Hyun, Yun-Ki;Bae, Mun-Ki;Kim, Kwang-Sik
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.41 no.1
    • /
    • pp.70-77
    • /
    • 2005
  • The study was results obtained from the trial make of the hybrid GPS-electromagnetic(EM) compass which overcome shortcoming of GPS compass and EM compass. The results were summarized as follows: GPS compass detected the stable ship's heading at 0.1^{\circ}$ intervals with the turning angular velocity of less than 25^{\circ}$/sec in the experiment for the characteristics of turning angular velocity with stepmotor, but in case of over 25^{\circ}$/sec the compass did not detect it. On the contrary, the EM compass always indicated the ship's heading with no connection of the turning angular velocity, however the compass is low accuracy compared with GPS one owing to a compass error. The ship's headings by the hybrid GPS-EM compass were displayed at fixed point and moving by car; if the GPS compass work the headings were displayed by GPS compass, if not, the heading is provided stably by adding or subtracting of a compass error to the heading of EM compass. Also, each ship's heading was derived from not only the GPS compass but also the EM one by add or subtract of the compass errors, and then was worked covariance for the analogy. The results show that the ship's heading of two compasses has been verified the similarity to 95% confidence level.

A hybrid navigation system of underwater vehicles using fuzzy inferrence algorithm (퍼지추론을 이용한 무인잠수정의 하이브리드 항법 시스템)

  • 이판묵;이종무;정성욱
    • Journal of Ocean Engineering and Technology
    • /
    • v.11 no.3
    • /
    • pp.170-179
    • /
    • 1997
  • This paper presents a hybrid navigation system for AUV to locate its position precisely in rough sea. The tracking system is composed of various sensors such as an inclinometer, a tri-axis magnetometer, a flow meter, and a super short baseline(SSBL) acoustic position tracking system. Due to the inaccuracy of the attitude sensors, the heading sensor and the flowmeter, the predicted position slowly drifts and the estimation error of position becomes larger. On the other hand, the measured position is liable to change abruptly due to the corrupted data of the SSBL system in the case of low signal to noise ratio or large ship motions. By introducing a sensor fusion technique with the position data of the SSBL system and those of the attitude heading flowmeter reference system (AHFRS), the hybrid navigation system updates the three-dimensional position robustly. A Kalman filter algorithm is derived on the basis of the error models for the flowmeter dynamics with the use of the external measurement from the SSBL. A failure detection algorithm decides the confidence degree of external measurement signals by using a fuzzy inference. Simulation is included to demonstrate the validity of the hybrid navigation system.

  • PDF

Magnetic Disturbance Model-Embedded Heading Estimation Filter for Time-Varying Magnetic Environments (시변 자기 환경에 강한 자기왜곡 모델 내장형 헤딩 추정 필터)

  • Lee, Jung Keun;Choi, Mi Jin
    • Journal of Sensor Science and Technology
    • /
    • v.26 no.4
    • /
    • pp.286-291
    • /
    • 2017
  • With regards to heading estimation using gyroscope and magnetometer signals, magnetic disturbance added in the magnetometer signals is a main degradation factor in the estimation accuracy. Although there are a number of existing mechanisms that may properly compensate for the magnetic disturbances, they are designed to react only to the magnetic disturbances, but not to the time derivative of disturbances. Note that the sensors may experience abrupt changes in the magnetic disturbances, particularly for ambulatory applications. This paper proposes a magnetic disturbance model-embedded heading estimation filter for time-varying magnetic environments. The proposed magnetic disturbance model is based on a first-order Markov chain with a conditional switching technique depending on the time derivative of disturbances. Once a high amount of derivative is detected, the corrupted magnetometer signals are discarded to protect the filter from them. In our experimental results, the averaged heading error of tests was $1.46^{\circ}$, while that of the original approach without switching was $5.75^{\circ}$.

Fix-to-Fix Navigation Complement Using Limits of Trigonometric Functions (삼각함수의 극한을 활용한 Fix-to-Fix 항법 보완)

  • Bum-su Kim
    • Journal of Advanced Navigation Technology
    • /
    • v.27 no.3
    • /
    • pp.274-280
    • /
    • 2023
  • The Fix-to-Fix Navigation is the technique for aircraft pilots to find out estimated Heading when crossing from present fix to other fix to want to go in the air. Because this is based on the Rule of Thumb method from one's experience, it could not find out exact estimated Heading. Furthermore if the pilot nears going fix, Bearing Pointer and Course Indicator of HSI are too close to use this technique, that makes the pilot lost in the air. In this paper, We take Limits of Trigonometric Functions into the Fix-to-Fix Navigation to overcome these disadvantages. This study introduces two solutions using Limits of Trigonometric Functions when doing Fix-to-Fix Navigation and analyzes the error of this solutions.

Stabilization of ship's heading in AIS of fishing vessel by a hybrid GPS/EM compass (어선 AIS에서의 하이브리드 GPS/EM 컴퍼스에 의한 선수방위 안정화)

  • Lee, Yoo-Won;Jo, Hyeon-Jeong;Lee, Dae-Jae
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.46 no.1
    • /
    • pp.50-55
    • /
    • 2010
  • The ship's heading information of hybrid GPS/EM compass were applied to the AIS of fishing vessel and examined the possibility of accuracy improvement. It is observed 453 each in AIS receiver of land among 3,982 each in AIS Rx/Tx transponder of the test ship at sea, and transmission interval according to the speed of ship is determined the 11.4% good transmitting data of the all information. In results, maximum compass error for the ship's heading of an EM compass was $19.1^{\circ}$. The variance of ship's heading owing to the speed of ship is surveyed. The COG (Course Over Ground) was changed extremely in $180^{\circ}W-179^{\circ}E$ range under 4.9knots, and in $24^{\circ}W-23^{\circ}E$ range over 4.9knots. Finally, using the ship's heading of EM compass and the COG from GPS for the autopilot system of a small fishing boat and the ship's heading information of AIS results in danger on the own ship's navigation safety and leads to make confusion both the others and VTS (Vessel Traffic Service) center. Therefore, the hybrid GPS/EM compass is identified as the best system for a small fishing boat and is allowed to offer continuously a ship's heading information with high accuracy and stability.

Pedestrian Gait Estimation and Localization using an Accelerometer (가속도 센서를 이용한 보행 정보 및 보행자 위치 추정)

  • Kim, Hui-Sung;Lee, Soo-Yong
    • The Journal of Korea Robotics Society
    • /
    • v.5 no.4
    • /
    • pp.279-285
    • /
    • 2010
  • This paper presents the use of 3 axis accelerometer for getting the gait information including the number of gaits, stride and walking distance. Travel distance is usually calculated from the double integration of the accelerometer output with respect to time; however, the accumulated errors due to the drift are inevitable. The orientation change of the accelerometer also causes error because the gravity is added to the measured acceleration. Unless three axis orientations are completely identified, the accelerometer alone does not provide correct acceleration for estimating the travel distance. We proposed a way of minimizing the error due to the change of the orientation. Pedestrian localization is implemented with the heading angle and the travel distance. Heading angle is estimated from the rate gyro and the magnetic compass measurements. The performance of the localization is presented with experimental data.

Failure Detection Filter for the Sensor and Actuator Failure in the Auto-Pilot System

  • Suh, Sang-Hyun
    • Journal of Hydrospace Technology
    • /
    • v.1 no.1
    • /
    • pp.75-88
    • /
    • 1995
  • Auto-Pilot System uses heading angle information via the position sensor and the rudder device to control the ship's direction. Most of the control logics are composed of the state estimation and control algorithms assuming that the measurement device and the actuator have no fault except the measurement noise. But such asumptions could bring the danger in real situation. For example, if the heading angle measuring device is out of order the control action based on those false position information could bring serious safety problem. In this study, the control system including improved method for processing the position information is applied to the Auto-Pilot System. To show the difference between general state estimator and F.D.F., BJDFs for the sensor and the actuator failure detection are designed and the performance are tested. And it is shown that bias error in sensor could be detected by state-augmented estimator. So the residual confined in the 2-dimension in the presence of the sensor failure could be unidirectional in output space and bias sensor error is much easier to be detected.

  • PDF

Improvement of Heading Error Using a Wavelet De-noising Filter for Indoor Mobile Robots: Application to MEMS Gyro (웨이블렛 디노이징 필터를 이용한 실내 이동로봇의 방위오차 개선연구: MEMS 자이로 적용)

  • Bae, Jin-Hyung;Hong, Sung-Kyung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.9
    • /
    • pp.893-897
    • /
    • 2008
  • To achieve the challenges of low-cost MEMS gyros for the precise self-localization of mobile robots, this paper examines an effective method of minimizing the drift on the heading angle that relies solely on integration of rate signals from a gyro. The main idea of the proposed approach is to use wavelet de-noising filter in order to reduce random noise which affects short-term performances. The proposed method was applied to Epson XV3500 gyro and the performances are verified by the comparisons with an existing commercial gyro module of vacuum cleaning robots.

Navigation System for a Deep-sea ROV Fusing USBL, DVL, and Heading Measurements (USBL, DVL과 선수각 측정신호를 융합한 심해 무인잠수정의 항법시스템)

  • Lee, Pan-Mook;Shim, Hyungwon;Baek, Hyuk;Kim, Banghyun;Park, Jin-Yeong;Jun, Bong-Huan;Yoo, Seong-Yeol
    • Journal of Ocean Engineering and Technology
    • /
    • v.31 no.4
    • /
    • pp.315-323
    • /
    • 2017
  • This paper presents an integrated navigation system that combines ultra-short baseline (USBL), Doppler velocity log (DVL), and heading measurements for a deep-sea remotely operated vehicle, Hemire. A navigation model is introduced based on the kinematic relation of the position and velocity. The system states are predicted using the navigation model and corrected with the USBL, DVL, and heading measurements using the Kalman filter. The performance of the navigation system was confirmed through re-navigation simulations with the measured data at the Southern Mariana Arc submarine volcanoes. Based on the characteristics of the measurements, the design process for the parameters of the system modeling error covariance, measurement error covariance, and initial error covariance are presented. This paper reviews the influence of the outliers and blackout of the USBL and DVL measurements, and proposes an outlier rejection algorithm that is robust to USBL blackout. The effectiveness of the method is demonstrated with re-navigation for the data that includes USBL blackouts.