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Failure Detection Filter for the Sensor and Actuator
Failure in the Auto-Pilot System

SangHyun Suh*

Abstract

Auto-Pilot System uses heading angle information via the position sensor and the
rudder device to control the ship’s direction. Most of the control logics are composed of
the state estimation and control algorithms assuming that the measurement device and
the actuator have no fault except the measurement noise. But such asumptions could
bring the danger in real situation. For example, if the heading angle measuring device
is out of order the control action based on those false position information could bring
serious safety problem. In this study, the control system including improved method
for processing the position information is applied to the Auto-Pilot System. To show
the difference between general state estimator and F.D.F., BJDFs for the sensor and
the actuator failure detection are designed and the performance are tested. And it is
shown that bias error in sensor could be detected by state-augmented estimator. So
the residual confined in the 2-dimension in the presence of the sensor failure could be
unidirectional in output space and bias sensor error is much easier to be detected.

1 Introduction

The automatic navigation technology of the ship has been developed due to the requirement
of the safety and the speediness, the accuracy. System failure detection and reconstruction
of the fault system became highlighted to increase the reliability of the automated ship. Also
the research field related to the failure detection of the ocean engineering system became
paid attention when the oil drilling or deep ocean exploit requires the high tech and high
risk drilling ship appears.

In 1980, when Balchen. et al[1] designed the control system, he took into account of
the possible failure of the measurement system. That is, he introduced a failure detection
technique by putting an error limit to the measurement value to replace the off the limit
measurement value with the estimation. This was very simple failure detection method to
be found very usfull when it was adapted to the diving and support vessel "Sea way Eagle”
in North Sea Ocean oil exploit site. But the frequent measurement blocking phenomenan
made the reliability of the failure detection system very poor. This was big problem at the
real field work so the failure detection technique was seriously paid attention from that
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time. Afterwords, the fuilure detection filter theory adapted to the airplane engine failure,
was applied to the failure detection of the actuator of SWATH ship in 1990 to be found
applicable[2].

In this paper, the detection filter theory, which detects the failure in the system by
generating the analytic redundancy using system dynamics, is introduced among many of
the failure detection techniques. For we have goed reference model which is result of
the study of the system dynamics in the ship maneuverability. And then the new failure
detection filter using state augmented estimator in the case of the sensor failure was derived.
Also it was applied to ship auto-pilot system to be shown useful for the failure detection.

2 Failure Detection Technique

2.1 Problem Modelling

A major analytic contribution to failure detection in linear systems is due to Beard (Beard(1971 NI
and Jones (Jones(1973))[4]. The approach used by Beard is similar to that used in state
estimation theory and linear observer theory.

It is assumed that the system to be monitored is represented by a linear, time-invariant
model with observable dynamics. The state space representation of the system is,

x(t) = Ax(t)+ Bu(t), | (1)
y(t) = Cx(t),

where x(t) is the state n-vector; u(t) is the input {-vector; and y(t) is the output m-vector.
The matrix A is the n x n system matrix, B is the n x [ control matrix and C is the m X n
output matrix. The basic state model equations of the detection filter are similar to eq. (1)
except for the presence of an output error feedback term; i.e.,

x(t) = A%(t)+ Bu(t) + Dly(t) — §(t), @)
y(t) = Cx(t),

with %(¢) as the filter state, and §(t) the expected measurement output.
The output residual is defined as the differences between the actual sensor outputs and
the detection filter outputs; i.e.,

q(t) = y(t) - 3(1). 3)

Also the state error , e(t), is defined to represent the difference between the actual system
state and the detection filter state; i.e.,

e(t) = x(t) — x(t). 4

Using egs. (1) through (4), we obtain the state error equation and the residual q(t) as
following,
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é(t) = [A—DCle(d), (5)
q(t) = Ce(t). (6)

Proper choice of the feedback gain matrix D is the goal of detection filter design. This
choice must satisfy the following requirements. One requirement is that [A — DC] be stable
so that any deviation in ¢(t) introduced by incorrect initial conditions will die out, allowing
X(t) to approach x(¢). Another is that when a selected component of the system fails,
the residual generated by the detection filter have a specific, time-invariant direction in the
residual space. Thus, it will be readily recognizable as a result of the particular failure in
the real system.

2.2 Failure Models

In the event of a failure, (A, B, C) and egs. (1) upon which the reference model is based
no longer describe the system dynamics, and y(¢) will deviate from y(t). By assuming
a suitable mathematical model for failures of the various system components, we can
examine the corresponding behavior of the residual q(t¢). Three general cases of failure
will be considered: actuator failures, system dynamics changes, and sensor failures.

2.2.1 Actuator Failure

If failure occurs in the i-th component of the actuator, the failure must result in a change
in the u;(¢) with unknown magnitude, n(¢). Then the real system with an actuator failure
in the i-th actuator component becomes, '

x(t) = Ax(t) + Bu(t) + bin(t), v (7

where b, is the i-th column of control matrix B and u; is the i-th component of u(t¢).
The failure does not alter the reference model, so the difference between the system state
and the filter state becomes,

é(t) = [A — DCle(t) + bin(t). (8)

The vector b; will be called the event vector associated with the i-th actuator; n(t) is
the scalar time function that multiplies the event vector. We also have,

q(t) = Ce(t). 9
2.2.2 Sensor Failure Model

Since sensors are not modeled in the state equation, sensor failure must be represented
by changes in only in the measurement equation. The changes are simple, though, because
all possible failures of any of these sensors can be modeled by one term composed of the
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appropriate unit vector times a ime-varying scalar. For instance, failure of the j-th sensor
is modeled by,

x(t) = Ax(t) + Bu(t), (10)
y(t) = Cx(t)+ E;n(t).

Here, E; is the j-th unit vector in the output space, and n(t) is again an arbitrary scalar
time function. Since the failure term appears in the measurement equation, we call eq. (10)
the sensor failure model.

In contrast to the other failures that we have described, those modeled by the sensor
failure model produce a residual vector that cannot be held fixed in direction in output
space. It can, however, always be constrained to a plane that is uniquely associated with
the particular failed sensor. The output vector y(t) is fed into the reference model through
the term D[y(t) — y(t)], so a failure of the j-th sensor alters the model by,

d;n(t) = DE;n(t), (1)
where d; is the j-th column of D. Consequently, the equations for the residuals become,

é(t) = [A~ DCle(t) — d;n(t), (12)
q(t) Ce(t) + E;n(t).

il

3 Detection Filter Theory

Assuming the system measurements are perfect, the reference model output differs from
the system output when a failure has occurred. Beard showed that this output error can
be used to modify the state of the reference model in such a manner that the output error
generated by certain system failures has a fixed direction in output space so that the output
residual is easily recognizable and can be associate with the particular failure.

Proper choice of the feedback gain matrix D is the goal of detection filter design. This
choice must satisfy the following requirements. One requirement is that [A -~ DC] be stable
so that any deviation in e(t) introduced by incorrect initial conditions will die out, allowing
X(t) to approach x(t). Another is that when a selected component of the system fails,
the residual generated by the detection filter have a specific, time-invariant direction in the
residual space. Thus, it will be readily recognizable as a result of the particular failure in
the real system.

The important feature of the detection filter is that the settled-out error e t) for a single
event maintains a fixed direction in the state space. Of course, this also means that Ce(t)
maintains a fixed direction in the output space.

The design of detection filters is primarily concerned with being able to specify certain
properties of the matrix (A — DC) by choice of D. It is known that if (A,C) is an
observable pair, then all n eigenvalues of (A ~ DC) can be arbitrarily specified by choice
of D (Kailath (1980)).
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3.1 Beard-Jones Detection Filter for Actuator Failures

The failure associated with the event vector f is detectable if and only if,

(1) the residual q(t) generated by fn(t) maintains a fixed direction in the output space,
and

(2) the eigenvalues of A — DC can be specified almost arbitrarily by the proper choice
of the detection filter gain matrix D.

However, the results of detection theory say that if the plant is observable; i.e., if (A, C)
is an observable pair, event information in the sense of Definition 1 can still be produced
by some detection filter. The limited capacity might mean that it may take a number of
different filters to provide all the event information.

From linear system theory, it is known that the solution of eq. (9) e(¢) must be contained
in the controllable subspace of f; i.e,

W=[f (A-DC)f --- (A-DC)" '] (13)

From egs. (9) and (13), it is concluded that the output residual q(t) will be constrained to
the subspace spanned by the columns of CW . Condition (1) of Definition 1 can, therefore,
be revised to required that D should satisfy,

rank CW =1, (14)

while maintaining the freedom to assign the eigenvalues of (A — DC). This is the dis-
tinguishable aspect by which the detection filter differs from the general state observer;
the detection filter gain D must satisfy Condition(1) for some f. So it is refered to as a
detection filter for that f.

By Condition(2), the matrix (A — DC) should at least be stable so that the initial
condition term in the solution of eq. (14) will die out. Also, it would be desirable to have
enough freedom to specify the eigenvalues of (A — DC') to be able to influence the time
required for Ce(t) to settle out.

Once the detection filter which satisfys the eq. (14) has been designed, the output
residual Ce(t) is unidirectional. The output residual is a linear transform of e(t), which is
spanned by column vectors of W, through C. It is defined that a vector space called “the
event space” is composed of the vectors representing all possible failures, real or ficticious,
that would induce a unidirectional output residual along Cf, given that the detection filter
is designed to monitor the failure driven by f. The basis vectors for the event space are
generated by g, the detection generator, as a cyclic subspace with respect to (A — DC). If
the dimension of the event space is v, then the basis vectors for the event space are,

{g7 (A""DC)g, "'7(A_DC)Uﬂlg}' (15)

If g is chosen as follows;

g = 0, (16)
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CA"'g # 0,
then the following holds:
{gu (A - Dc)gv T (A - DC)V—lg} = {g’ Aga R Au—lg}' (17)

Thus, if the g and v are found, the event vector f can be expressed as a combination of
basis vectors for the event space,

f:a1g+a2Ag+---+A"_1g. (18)
Multiplying C on both sides of eq. (18), and with the aid of eq. (16),
Cf=CA" g (19)

The Caylie-Hamilton Theorem[5] says that if v eigenvalues of (A — DC) are given by
the roots of

s/ +p,8"+ -+ ps+p1 =0, (20)

then (A~ DC)*g +p,(A~DC)*'g+---+p2(A— DC)g+p1g = 0. Using eq. (16)
and eq. (18) yields,

DCA* ‘g = DCf = pig + ppAg + - +p, A" 'g + Ag. 21)

Here the p; are at the designer’s will and if v is given, the detection gain D can be calculated
by using the general solution form;

D = [pg+- - +pATig + Atgl((C)TCE]TH(CE)T
+ Do|I - ctj(ct)T et (e, (22)

as the general solution. Note that [(Cf)TCf] is a nonzero scalar since Cf # 0. For D
given by eq. (22),

A—DC = A-[pg+--+pA g+ Agll(CHf Cf]H(Ch)T
+ Do[I - cf[(cHT et~ (cE)TIC

= AO - D()C(), (23)

where,
Ay = A—I[pg+---+p A g+ Agll(CHTCETH(C)T, (24)
C, = |I-cfjchfof(enc. (25)

When Condition(1) rank CW = 1 is satisfied, v-eigenvalues of (A—DC) are specified.
The number of eigenvalues of (Aq — DoCh) to be specified by free choice of Dy, which is
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same as the remaining number of the eigenvalues of the (A — DC) once D is chosen to
satisfy the Condition(1), is given by,

Co Co
¢ =71k Co:Ao =rk C():Ko , (26)
Cody™ Coly ™
where Cj is defined by eq. (25) and,
Ko = A - Af[(CH)TCf] ' (Cf)TC. Q27

Therefore, the number of eigenvalues that can be assigned when D is constrained to a
solution of eq. (14), is independent of the choice of g or v. Now the detectability of f
depends on the existence of the detection generator, g, whose order is v = n — ¢/, the
maximal detection order. Beard[3] proved the existance and unigness of this maximal
detection generator.

3.2 State Augmented FDF for Sensor Failure

For some types of failures like the bias error in teh sensor, we could also utilize the
state augmentation method. This occurrence can be represented by measurement process
described by,

y(t) = Cx(t) + b(t), (28)

where b(t) is an m-dimensional vector whose value is unknown. By state augmentation, a
new augmented state vector x,(t) = [x(t), b(t)]? is defined with dimension of augmented
state (n + m). In general, the augmented state dynamics can be modelled by,

b(t) = Anx(t) + Agab(t). (29)

Then, the augmented system becomes,

[ﬁﬁiﬂ = [Azl A22][ 2] [ ]“(“’ (30)
ﬂwz[CIWEM a1)

where 1 is the identity matrix.

Furthermore, since the system of eq. (30) has no bias error itself, the state vector
estimate is automatically compensated for the presence of the measurement bias. First,
let’s think about the development of an observer to estimate the bias error in sensor. If
b(t) is an unknown constant parameter, then it can be modeled by the vector differential
equation,

b(t) = 0.
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Augmenting the system to the order of n + m yields,

5ol = [0 ol [a)+[5]uo, G2
v = 1c 3],

and an observer can be designed for this augmented system; i..e.,

[im - [’3 8J [Eﬁii] + [f,’] u(t) + Ky(t) — Cx(t) — b(t)].

By examining the b(t), the bias errors in the sensors can be detected.

4 Application to Auto-Pilot System

Let’s test the performance of the detection filter which uses the model reference of the
ship auto-pilot system, centerpiece of the ship automatic navigation. First, it is necessary
to describe the ship motion equiped with auto-pilot system in the mathematical model.
We assume that the ship auto-pilot system be composed of the magnetic compass or gyro
compass to measure the heading angle and the controller which decides the command
rudder angle from the difference between the actural heading and the desired heading, and
the actuator which rotate the rudder. So the whole system has directional stability only.
The block diagram of the system is shown in Figure 1.

4.1 State-Space Motion Equation

It is known that the ship maneuvering motion has strong nonlinearity, especially in case
of turning with large rudder angle which make very complicated flow phenomenon around
the ship hull. But when the auto-pilot system is operated in the ocean-going situation,
the rudder angle is confined within 10 degree. And it is reasonable to assume that the
ship motion be linear. In this linearization of the mathematical model, the validity test is
necessary. For such a closed-loop system as the ship with auto-pilot system, the validity
range of the linearized model must be estimated. In this paper, linearized sway-yaw motion
equations are chosen for which every hydrodynamic coefficients are well known. The
followings are mathematical description of linearized sway-yaw motions ;

—You 4+ (m —Y;)0 — (Y, —m)r — (Y; — mzg)t = Ysé (33)
—N‘U/U + (Nt) - mTG)U - (Nr - mCL'G)T - (IZ — NT)T = N§6

here v,v,r,7,6 are sway velocity, acceleration, yaw velocity, acceleration, and rud-
der angle respectively. And every definitions of the hydrodynamic coefficients are those
of ITTC’s. Above maneuvering motion equations are rewrittn as a state-space variable
equation;
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d U(t) ayy a2 0 ’U(t) b11
= )] = lan axn 0 |r()]|+ [bﬂ} 5(t) (34)
(1) 0 1 o] |eé® 0

v(t)
y(t)=¢() = [0 0 1] [T(t)}
#(t)
here ¢ is heading angle. Actually there is time lag through the steering system between
the real rudder angle and therudder command. Generally this time lag can be expressed
as lIst order time lag system, say, 6(t) = —76(t) + 76.(t). Also there is a rudder angle
feedback unit with which the actual rudder angle can be measured. If this actuator model
is involved in the state space equation, the whole state-space equation became,

x(t) = Ax(t)+ Bu(t), (35)
y(t) = COx()
where z = [v, T, ¢, 6|7 and
ain a2 0O 211 0
a a 0 0
A= 81 f2 ’ 82 B= :
0 0 0 -7 T

And the measurement equation is composed of the heading angle by the compass and
the rudder angle by the rudder angle feedback unit as following,

0010}

62[0001

4.2 Controller Design

The algorithm for auto-pilot system,d. = f(v,r, ¢,6) the function f is modelled as a P.L.D
controller, and the feedback gains are determined for the stable closed loop system. It is
necessary to test the controllability of the system before the controller is designed. If the

controllability matrix.
9=[B AB ... A""'B]

has full rank, say, same rank as the system matrix A, then the system is controllable.
So eq(32) has rank 4 in this system and is controllable. And the simplified closed loop
system without rudder angle feedback unit and rudder dynamics could be modelled as
a SISO (single input - single output) system and the feedback gain could be obtained
by pole placement technique. eq(30) could be expressed in Laplace domain as G(s) =
C(sI — A)"! B following,

ag1b11 + bya(5 — aiy)
G(s) = 36
(5) s(s? — (an1 + ag2)s + anag — ai2a) (36)
And the variation of the closed loop pole due to the variation of the feedback gain K is

shown on Figure 2.
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4.3 State Estimator Design

It is not possible that all the state variable could be measured in the measurement equation
C. So the possibility of estimation of the rest state variable must be checked by using
the measurable state variable and system dynamics. In case of the system composition for
which the state estimation is impossible, it is necessary to consist the minimum measurement
device for the state feedback controller possible. It is known that the observability of the
system could be found by the checking of the rank of the observability matrix 2 is following

3

C
o=| ¢4 (37)
CA™!

And when € has the full rank, this system is said observable. When the system is observ-
able, the state variable could be estimated by state estimator. It is known by Seperation
Theorem [5] that if the state estimations are used in place of the real state variable in
the observable system, the stability of the whole system including state estimator could be
judged by the stabilities of each controller and state estimator. Then the dynamics of the
state estimator could be ;

2(t) = AZ(t) + Bu(t) + Ke(y(t) — §()) (38)

When state estimation error e(t) is defined as e(t) = z(t) — &(t), Kg is obtained to
satisfy e(t) — 0ift — oo. The state estimation could replace the real state variable and
if the estimator is designed to have the much faster dynamics than that of the controller,
the effect of the dynamics of the estimator could be negligible for the whole system. We
could see the estimator design problem is dual of the controller design. So K is decided
as for the system (AT, C7T) to be controllable like the KC is in (A,C). In Figure 3, the
block diagram of the controller and state estimator is shown.

4.4 FDF(Failure Detection Filter) Design

The simple state estimator is designed i the above section and the F.D.F is designed in
this section to be tested as a state estimator in case of no system failure and as a failure
detection filter in cas of the system failure. The detection filter which is designed as a
BIDF in section 3 is as following ;

—91.677 154.168
87.032 -214.623
b= 22.135  —51.430 (39)

1.459 0

The simulation results which compare the function of FDF and simple state estimator
given actuator failure f (Bias Error Ramdom Disturbance) are shown in Figure 4, Figure
5. As shown in Figure 4, the residual generated by the FDF has unidirection [1 0] in the
output space to show that the system has the actuator failure. But in Figure 5, the residual
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generated by simple state estimator gives the state estimation only, without any information
related to the failure in the system. Moreover the state estimation is carried out using wrong
measurement value that came from the system failure. And it is dangerous to use those
state estimation for the state feedback controller. Also we can see the bias error in the
sensor could be detected by the augmented state estimator in Figure 6.

5 Conclusions

There are many approaches for the failure detection in the dynamic system. When the system
dynamics is expressed mathematically and its validity is proved like the ship maneuvering
equation, it is found that the failure detection and identification technique by analytical
redundancy using reference model is useful. In detail, the failure detection filter theory was
introduced and the failures in the system were mathematically modelled. Especially the
state augmented estimator in which bias error is included as a new augmented state, detects
the sensor bias error. Though it is restricted, the difficulty of the sensor failure detection
has been removed by the state angmented estimator which change the sensor failure into
actuator failure to be found easy to detect the failure. Finally the failure detection filter and
state estimator were applied to the auto-pilot system of the ship and numerical simulation
was made to show the differences.

References

[1] Balchen, J., G., Jenssen, N. A., and Saelid,S., "Dynamic positioning Using Kalman
Filtering and Optimal Control Theory”, Proceedings of the IFAC/IFIP Symposium on
Automation in Offshore Oil Field Operations, North Holland Publishing, Amsterdam,
1976

[2] Ryan R. Kim “Failure Detection and Control of an Automatic Control System in
SWATH” Proceedings 9th Ship Control System Symposium,

[3] Beard,R.V., “Failure Accommodation in Linear Systems Through Self-
Reorganization”, Report MIT-71-1, Man Vehicle Laboratory, MIT, Feb., 1971

[4] Jones, H.L., Failure Detection in Linear Systems, PhD. Dissertation, MIT, Sept., 1973
[5] Kailath, F., Linear Systems, Prentice-Hall, 1980

[6] Deckert, J. C., M.N. Desai, J.J. Deyst and A.S. Willsky, ”F-8 DFBW Sensor Failure
Identification using Analytic Redundancy”, IEEE Trans. Automatic Control, Vol. 22,
1977

[7] Patton, R.J., PM. Frank and R.N. Clark Fault Diagnosis in Dynamic Systems : Theory
and Applications, Prentice-Hall, 1989

[8] Matrix User’s Guide ; Engineering Analysis and Control Design, Integrated System
Inc.. 1987



86 Failure Detection Filter for the Sensor and Actuator Failure in th Auto-Pilot System

Dist rbonce
{ Nolse
Ship —
Dynamics Compass
Rudder - Reference
Steering [ - i
ng Commands Auto-Pilot Heading

Figure 1: Auto-Pilot system composition

25 - - ,
& ;
. 2 i
< o i
4 !

1.8 &

ﬁ i
o I
'
LI
5 - g
> i
S i
& 0 R -1 -85 ¥ - xR O % %
g .
E 5
-8 .
< L2 2N
a i
.' _ ]
LA
4 H
-1.51- 4] :
[} |
5 A o H
- '3 H

L & ; i

-2.5 ¥ I t 1

9 1

-1
Reg!

Figure 2: Closed-loop system poles due to feedback gain K. changes



SangHyun Suh

Feult &
Modelling Error

_— t Actual >

87

System
r-—7"- -~ =TT ~ T | Residual
L ] Unfaulty y % | Generation
o Model -

q

Figure 3: Basic configuration of residual generation through state estimation

15 ¢ d
5 18 oty { =
=g e = 05 Pt
o A A N S P }
=]
TS B . W4 g
5 / g 0
gl / ........... b F
0 Lot -.05 - -
0 1 2 3 4 0 2 3 4
time time
oulput residual by fdf output residual by ke

Figure 4: Time history of residual by detection filter and simple state estimator due to bias

€rror



88  Fuilure Detection Filter for the Sensor and Actuator Failure in th Auto-Pilot System

A5 ¢

CHE R =
= 05 oo ejomn ‘ﬁ .SA...E('\.‘J S =
3 ) ;’, ,Hgl o
B Y. . T %
g A R )
05 e ; ,j s

i

—-.1 s doay it

0 1 2 3 4

time time
output residual by fdf output residual by ke

Figure 5: Time history of residual by detection filter and simple state estimator due to
random disturbance

.1 :
Q i
- :
o :
g I - 70 T T R — .
e ;
v i
O O [ s .
o o
3 0 petmmmi S
o : Rt E N
-.05 R TS ST B

0 1 2 3 4
time

Figure 6: State estimate of augmented system



